【題目】如圖,點O為正方形ABCD的中心,BE平分∠DBC交DC于點E,延長BC到點F,使FC=EC,連結DF交BE的延長線于點H,連結OH交DC于點G,連結HC.則以下四個結論中:①OH∥BF,②GH=BC,③OD=BF,④∠CHF=45°。正確結論的個數(shù)為( )

A. 4個 B. 3個 C. 2個 D. 1個

【答案】B

【解析】分析:根據(jù)已知對各個結論進行分析,從而確定正確的個數(shù).①作EN⊥BD于N,連接EF,由全等三角形的判定定理可得△DNE≌等腰直角△ECF,再由平行線的性質得出OH是△DBF的中位線即可得出結論;②根據(jù)OH是△BFD的中位線,得出GH=CF,由GH<BC,可得出結論;③由OH是△BFD的中位線,BE平分∠DBC,由三角形全等得出BD=BF,即可得出結論.④根據(jù)四邊形ABCD是正方形,BE是∠DBC的平分線可求出Rt△BCE≌Rt△DCF,再由∠EBC=22.5°即可求出結論;

解析:作EN⊥BD于N,連接EF.①∵BE平分∠DBC∴EC=EN∴等腰直角△DNE≌等腰直角△ECF,DE=FE∴∠HEF=45°+22.5°=67.5°∴∠HFE=22.5°,∴∠EHF=180°-67.5°-22.5°=90°∵DH=HF∴OH是△DBF的中位線∴OH∥BF,故①正確;②根據(jù)OH是△BFD的中位線,得出GH=CF,由GH<BC,故②錯誤;③由OH是△BFD的中位線,BE平分∠DBC,由三角形全等得出BD=BF,∵OD=BD,∴OD=BF;④∠HCF=90°-22.5°=67.5°HFC=45°+22.5°=67.5°,∠CHF=45°

故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校七年級開展征文活動,征文主題只能從愛國”“敬業(yè)”“誠信”“友善四個主題選擇一個,七年級每名學生按要求都上交了一份征文,學校為了解選擇各種征文主題的學生人數(shù),隨機抽取了部分征文進行調(diào)查,根據(jù)調(diào)查結果繪制成如下兩幅不完整的統(tǒng)計圖.

1)求共抽取了多少名學生的征文;

2)將上面的條形統(tǒng)計圖補充完整;

3)在扇形統(tǒng)計圖中,愛國主題所對應的圓心角是多少;

4)如果該校七年級共有名學生,請估計該校選擇以友善為主題的七年級學生有多少名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,我們不妨把橫坐標和縱坐標相等的點叫“夢之點”,例如點(1,1),(﹣2,﹣2),,…都是“夢之點”,顯然“夢之點”有無數(shù)個.

1)若點P2,m)是反比例函數(shù)yn為常數(shù),n0)的圖象上的“夢之點”,求這個反比例函數(shù)的解析式;

2)函數(shù)y3kx+s1k,s為常數(shù))的圖象上存在“夢之點”嗎?若存在,請求出“夢之點”的坐標,若不存在,說明理由;

3)若二次函數(shù)yax2+bx+1a,b是常數(shù),a0)的圖象上存在兩個“夢之點”Ax1,x1),Bx2,x2),且滿足﹣2x12,|x1x2|2,令tb2b+,試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,CACB,∠C90°,點DBC的中點,將△ABC沿著直線EF折疊,使點A與點D重合,折痕交AB于點E,交AC于點F,那么sinBED的值為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解市民對全市創(chuàng)文工作的滿意程度,婁星區(qū)某中學數(shù)學興趣小組在婁底城區(qū)范圍內(nèi)進行了抽樣調(diào)查,將調(diào)查結果分為非常滿意,滿意,一般,不滿意四類,回收、整理好全部問卷后,繪制了兩幅不完整的統(tǒng)計圖1、圖2,結合圖中信息,回答:

1)此次共調(diào)查了多少名市民?

2)將兩幅統(tǒng)計圖中不完整的部分補充完整;

3)若我市城區(qū)共有480000人口,請估算我市對創(chuàng)文工作“非常滿意和滿意”的市民人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在直角坐標系中,直線lx、y軸分別交于點A4,0)、B0,)兩點,∠BAO的角平分線交y軸于點D C為直線l上一點,以AC為直徑的⊙G經(jīng)過點D,且與x軸交于另一點E

1)求證:y軸是⊙G的切線;

2)求出⊙G的半徑r,并直接寫出點C的坐標;

3)如圖2,若點F為⊙G上的一點,連接AF,且滿足∠FEA=45°,請求出EF的長?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線yx2+2m1x2mm0.5)的最低點的縱坐標為﹣4

1)求拋物線的解析式;

2)如圖1,拋物線與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,D為拋物線上的一點,BD平分四邊形ABCD的面積,求點D的坐標;

3)如圖2,平移拋物線yx2+2m1x2m,使其頂點為坐標原點,直線y=﹣2上有一動點P,過點P作兩條直線,分別與拋物線有唯一的公共點E、F(直線PEPF不與y軸平行),求證:直線EF恒過某一定點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊ABC的邊長為4,點OABC的外心,∠FOG120°.繞點O旋轉∠FOG,分別交線段ABBCD、E兩點.連接DE給出下列四個結論:①ODOE;②SODESBDE;③S四邊形ODBE;④BDE周長的最小值為6.上述結論中正確的個數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+c的圖象,對于下列說法:其中正確的有( 。

ac0,

②2a+b0,

③4acb2,

a+b+c0

x0時,yx的增大而減小,

A.5B.4C.3D.2

查看答案和解析>>

同步練習冊答案