【題目】(1)如圖,∠AOB=90°,∠BOC=40°,ON平分∠AOC,OM平分∠BOC,求∠MON的度數(shù);

(2)如果(1)中∠BOC=α,且α<90°,其他條件不變,求∠MON的度數(shù);

(3)如果(1)中∠AOB=β,且β<90°,其他條件不變,求∠MON的度數(shù);

(4)從(1)(2)(3)的結(jié)果中能得到什么規(guī)律?

【答案】(1)45°(2)45°(3)β(4)∠MON的大小只與∠AOB的大小有關(guān),且∠MON=∠AOB

【解析】

(1)根據(jù)角平分線的定義得到∠MOC=BOC,NOC=AOC,則∠MON=NOC-MOC=AOC-BOC)=AOB,然后把∠AOB的度數(shù)代入計算即可;

(2)根據(jù)角平分線的定義得到∠MOC=BOC,NOC=AOC,則∠MON=NOC-MOC=AOC-BOC)=AOB,然后把∠AOB的度數(shù)代入計算即可;

(3)先得到∠AOC=β+ BOC,再根據(jù)角平分線的定義得到∠COM=BOC,CON=AOC=(β+ BOC),然后利用∠MON=CON-COM進(jìn)行計算;

(4)利用前面計算的結(jié)論得到∠MON=AOB.

(1)MON=NOC-MOC=AOC-BOC= (AOB+BOC)-BOC=AOB=×90°=45°;

(2)MON=NOC-MOC=AOC-BOC= (AOB+BOC)-BOC=AOB=×90°=45°;

(3)MON=NOC-MOC=AOC-BOC= (AOB+BOC)-BOC=AOB=β;

(4)MON的大小只與∠AOB的大小有關(guān),且∠MON=AOB.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】京九鐵路是199210月全線開工,199691日建成通車,是中國一次性建成雙線線路最長的一項宏偉鐵路工程.其中北京﹣商丘段全長約800千米,京九鐵路的通車使商丘成為河南省僅次于鄭州的第二大樞紐城市,為商丘提供了發(fā)展的機(jī)遇.京雄商高鐵的預(yù)設(shè)平均速度將是老京九鐵路速度的3倍,可以提前5.8個小時從北京到達(dá)商丘,求京雄高鐵的平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD中,∠A=140°,D=80°.

(1)如圖1,若∠B=C,試求出∠C的度數(shù);

(2)如圖2,若∠ABC的角平分線BEDC于點E,且BEAD,試求出∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于數(shù)軸上不重合的兩點A,B,給出如下定義:若數(shù)軸上存在一點M,通過比較線段AMBM的長度,將較短線段的長度定義為點M到線段AB的“絕對距離”. 若線段AMBM的長度相等,將線段AMBM的長度定義為點M到線段AB的“絕對距離”.

(1)當(dāng)數(shù)軸上原點為O,點A表示的數(shù)為-1,點B表示的數(shù)為5時.

①點O到線段AB的“絕對距離”為____;

②點M表示的數(shù)為,若點M到線段AB的“絕對距離”為3,則的值為______;

(2)在數(shù)軸上,點P表示的數(shù)為-6,點A表示的數(shù)為-3,點B表示的數(shù)為2. P以每秒2個單位長度的速度向正半軸方向移動時,點B同時以每秒1個單位長度的速度向負(fù)半軸方向移動. 設(shè)移動的時間為秒,當(dāng)點P到線段AB的“絕對距離”為2時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= (x>0)的圖象交于點P(n,2),與x軸交于點A(﹣4,0),與y軸交于點C,PB⊥x軸于點B,點A與點B關(guān)于y軸對稱.

(1)求一次函數(shù),反比例函數(shù)的解析式;
(2)求證:點C為線段AP的中點;
(3)反比例函數(shù)圖象上是否存在點D,使四邊形BCPD為菱形?如果存在,說明理由并求出點D的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,對角線AC、BD交于點O,將BD繞點B逆時針旋轉(zhuǎn)30°到BE所在的位置,BE與AD交于點F,分別連接DE、CE.

(1)求證:DE=DF;
(2)求證:AE∥BD;
(3)求tan∠ACE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:二次函數(shù)y=ax2+bx+c的圖象所示,下列結(jié)論中:①abc>0;②2a+b=0;③當(dāng)m≠1時,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2 , 且x1≠x2 , 則x1+x2=2,正確的個數(shù)為(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC是邊長為4的等邊三角形,點O在邊AB上,⊙O過點B且分別與邊AB,BC相交于點D,E,EF⊥AC,垂足為F.

(1)求證:直線EF是⊙O的切線;
(2)當(dāng)直線DF與⊙O相切時,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】操作探究:如圖,ABC在平面直角坐標(biāo)系中,其中,點A,B,C的坐標(biāo)分別為A(–2,1),B(–4,5),C(–5,2).

(1)作ABC關(guān)于直線lx=–1對稱的A1B1C1,其中,點A, B,C的對稱點分別為點A1B1,C1

(2)寫出點C1的坐標(biāo)__________;

(3)在平面直角坐標(biāo)系中有一點P位于第四象限,其坐標(biāo)表示為Pmn),則點P關(guān)于直線l的對稱點Q的坐標(biāo)表示為__________.

查看答案和解析>>

同步練習(xí)冊答案