【題目】如圖,已知AD是等腰△ABC底邊BC上的高,sinB= ,點(diǎn)E在AC上,且AE:EC=2:3,則tan∠ADE=( )
A.
B.
C.
D.
【答案】B
【解析】解:如圖.作EF∥CD交AD于F點(diǎn).
∵sinB=sinC= = ,
∴設(shè)AD=4x,則AC=5x,CD=3x,
∵ = = ,
∴FD= x,AF= x.
∵ = = ,
∴EF= x.
∴tan∠ADE= = ,
故選:B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等腰三角形的性質(zhì)的相關(guān)知識(shí),掌握等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角),以及對(duì)解直角三角形的理解,了解解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖所示,四邊形ABCD中,∠B=∠D=90°,AE平分∠DAB,AE//CF.
(1)說(shuō)明:CF平分∠BCD;
(2)作△ADE的高DM,若AD=8,DE=6,AE=10,求DM的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線 的對(duì)稱軸為 ,交 軸的一個(gè)交點(diǎn)為( ,0),且 , 則下列結(jié)論:① , ;② ;③ ;④ . 其中正確的命題有( )個(gè).
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為滿足市場(chǎng)需求,新生活超市在端午節(jié)前夕購(gòu)進(jìn)價(jià)格為元/個(gè)的粽子,根據(jù)市場(chǎng)預(yù)測(cè),該品牌粽子每個(gè)售價(jià)元時(shí),每天能出售個(gè),并且售價(jià)每上漲元,其銷售量將減少個(gè),為了維護(hù)消費(fèi)者利益,物價(jià)部門規(guī)定,該品牌粽子的售價(jià)不能超過(guò)進(jìn)價(jià)的.
(1)請(qǐng)你利用所學(xué)知識(shí)幫助超市給該品牌粽子定價(jià),使超市每天的銷售利潤(rùn)為元.
(2)定價(jià)為多少時(shí)每天的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】感知:解不等式 .根據(jù)兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),得不等式組 或不等式組 解不等式組 ,得 ;解不等式組 ,得 ,所以原不等式的解集為 或.
(1)探究:解不等式 .
(2)應(yīng)用:不等式 的解集是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】世界讀書日,某書店舉辦“書香”圖書展,已知《漢語(yǔ)成語(yǔ)大詞典》和《中華上 下五千年》兩本書的標(biāo)價(jià)總和為元,《漢語(yǔ)成語(yǔ)大詞典》按標(biāo)價(jià)的折出售,《中華 上下五千年》按標(biāo)價(jià)的折出售,小明花元買了這兩本書,求這兩本書的標(biāo)價(jià)各多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下題和解題過(guò)程:化簡(jiǎn),使結(jié)果不含絕對(duì)值.
解:當(dāng)時(shí),即時(shí),
原式
;
當(dāng),即時(shí),
原式
這種解題的方法叫“分類討論法”.
(1)請(qǐng)你用“分類討論法”解一元一次方程:;
(2)試探究:當(dāng)分別為何值時(shí),方程
①無(wú)解,②只有一個(gè)解,③有兩個(gè)解
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠BAD的平分線AE與∠BCD的平分線CE交于點(diǎn)E,若∠B=38°,∠D=20°,則∠AEC的度數(shù)為
A. 9°B. 18°C. 22°D. 29°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一艘漁船位于港口A的北偏東60°方向,距離港口20海里B處,它沿北偏西37°方向航行至C處突然出現(xiàn)故障,在C處等待救援,B,C之間的距離為10海里,救援船從港口A出發(fā)20分鐘到達(dá)C處,求救援的艇的航行速度.(sin37°≈0.6,cos37°≈0.8, ≈1.732,結(jié)果取整數(shù))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com