【題目】計算: ﹣( ﹣1)0+( 2﹣4sin45°.

【答案】解:原式=2 ﹣1+4﹣2 =3
【解析】根據(jù)零指數(shù)冪、乘方、特殊角的三角函數(shù)值、二次根式化簡四個考點.針對每個考點分別進(jìn)行計算,然后根據(jù)實數(shù)的運算法則求得計算結(jié)果.
【考點精析】本題主要考查了零指數(shù)冪法則和整數(shù)指數(shù)冪的運算性質(zhì)的相關(guān)知識點,需要掌握零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù))才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,銳角△ABC中,BE , CD是高,它們相交于O , 則圖中與△BOD相似的三角形有( 。
A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰直角三角形ABC中,AB=AC,∠BAC=90°.點P為直線AB上一個動點(點P不與點A,B重合),連接PC,點D在直線BC上,且PD=PC.過點P作PE^PC,點D,E在直線AC的同側(cè),且PE=PC,連接BE.
(1)情況一:當(dāng)點P在線段AB上時,圖形如圖1 所示;
情況二:如圖2,當(dāng)點P在BA的延長線上,且AP<AB時,請依題意補全圖2;.

(2)請從問題(1)的兩種情況中,任選一種情況,完成下列問題:
①求證:∠ACP=∠DPB;
②用等式表示線段BC,BP,BE之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=AC,∠A=30°,以B為圓心,BC長為半徑畫弧,分別交AC,AB于D,E兩點,并連結(jié)BD,DE. 則∠BDE的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好地貫徹落實國家關(guān)于“強化體育課和課外鍛煉,促進(jìn)青少年身心健康、體魄強健”的精神,某校大力開展體育活動.該校九年級三班同學(xué)組建了足球、籃球、乒乓球、跳繩四個體育活動小組.經(jīng)調(diào)查,全班同學(xué)全員參與,各活動小組人數(shù)分布情況的扇形圖和條形圖如下:

(1)求該班學(xué)生人數(shù);
(2)請你補全條形圖;
(3)求跳繩人數(shù)所占扇形圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點H在⊙O上,E是 的中點,過點E作EC⊥AH,交AH的延長線于點C.連接AE,過點E作EF⊥AB于點F.

(1)求證:CE是⊙O的切線;
(2)若FB=2,tan∠CAE= ,求OF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在反比例函數(shù)y= (x>0)的圖象上,有點P1 , P2 , P3 , P4…Pn(n為正整數(shù),且n≥1).它們的橫坐標(biāo)依次為1,2,3,4…n(n為正整數(shù),且n≥1),分別過這些點作x軸與y軸的垂線,連接相鄰兩點,圖中所構(gòu)成的陰影部分的面積從左到右依次為S1 , S2 , S3…Sn1(n為正整數(shù),且n≥2),那么S2+S3+S4+…S7=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小華在研究函數(shù)y1=x與y2=2x圖象關(guān)系時發(fā)現(xiàn):如圖所示,當(dāng)x=1時,y1=1,y2=2;當(dāng)x=2時,y1=2,y2=4;…;當(dāng)x=a時,y1=a,y2=2a.他得出如果將函數(shù)y1=x圖象上各點的橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼?倍,就可以得到函數(shù)y2=2x的圖象.類比小華的研究方法,解決下列問題:
(1)如果函數(shù)y=3x圖象上各點橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼?倍,得到的函數(shù)圖象的表達(dá)式為;
(2)①將函數(shù)y=x2圖象上各點的橫坐標(biāo)不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>倍,得到函數(shù)y=4x2的圖象; ②將函數(shù)y=x2圖象上各點的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,得到圖象的函數(shù)表達(dá)式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,既是中心對稱圖又是軸對稱圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案