【題目】如圖,在反比例函數(shù)y= (x>0)的圖象上,有點(diǎn)P1 , P2 , P3 , P4…Pn(n為正整數(shù),且n≥1).它們的橫坐標(biāo)依次為1,2,3,4…n(n為正整數(shù),且n≥1),分別過這些點(diǎn)作x軸與y軸的垂線,連接相鄰兩點(diǎn),圖中所構(gòu)成的陰影部分的面積從左到右依次為S1 , S2 , S3…Sn﹣1(n為正整數(shù),且n≥2),那么S2+S3+S4+…S7= .
【答案】
【解析】解:當(dāng)x=1時,P1的縱坐標(biāo)為4, 當(dāng)x=2時,P2的縱坐標(biāo)為2,
當(dāng)x=3時,P3的縱坐標(biāo)為 ,
當(dāng)x=4時,P4的縱坐標(biāo)為1,
當(dāng)x=5時,P5的縱坐標(biāo)為 ,
…
則S1= ×1×(4﹣2)=1=2﹣1;
S2= ×1×(2﹣ )= =1﹣ ;
S3= ×1×( ﹣1)= = ﹣ ;
S4= ×1×(1﹣ )= = ﹣ ;
…
Sn= ﹣ ;
∴S2+S3+S4+…+S7
=1﹣ + ﹣ +…+ ﹣
=1﹣
= ,
所以答案是: .
【考點(diǎn)精析】關(guān)于本題考查的比例系數(shù)k的幾何意義,需要了解幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水果店張阿姨以每斤2元的價格購進(jìn)某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.
(1)若將這種水果每斤的售價降低x元,則每天的銷售量是多少斤(用含x的代數(shù)式表示)
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系 xOy中,對于點(diǎn)P(x,y),以及兩個無公共點(diǎn)的圖形W1和W2 , 若在圖形W1和W2上分別存在點(diǎn)M (x1 , y1 )和N (x2 , y2 ),使得P是線段MN的中點(diǎn),則稱點(diǎn)M 和N被點(diǎn)P“關(guān)聯(lián)”,并稱點(diǎn)P為圖形W1和W2的一個“中位點(diǎn)”,此時P,M,N三個點(diǎn)的坐標(biāo)滿足x= ,y=
(1)已知點(diǎn)A(0,1),B(4,1),C(3,﹣1),D(3,﹣2),連接AB,CD.
①對于線段AB和線段CD,若點(diǎn)A和C被點(diǎn)P“關(guān)聯(lián)”,則點(diǎn)P的坐標(biāo)為;
②線段AB和線段CD的一“中位點(diǎn)”是Q (2,﹣ ),求這兩條線段上被點(diǎn)Q“關(guān)聯(lián)”的兩個點(diǎn)的坐標(biāo);
(2)如圖1,已知點(diǎn)R(﹣2,0)和拋物線W1:y=x2﹣2x,對于拋物線W1上的每一個點(diǎn)M,在拋物線W2上都存在點(diǎn)N,使得點(diǎn)N和M 被點(diǎn)R“關(guān)聯(lián)”,請在圖1 中畫出符合條件的拋物線W2;
(3)正方形EFGH的頂點(diǎn)分別是E(﹣4,1),F(xiàn)(﹣4,﹣1),G(﹣2,﹣1),H(﹣2,1),⊙T的圓心為T(3,0),半徑為1.請在圖2中畫出由正方形EFGH和⊙T的所有“中位點(diǎn)”組成的圖形(若涉及平面中某個區(qū)域時可以用陰影表示),并直接寫出該圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】研究幾何圖形,我們往往先給出這類圖形的定義,再研究它的性質(zhì)和判定方法.我們給出如下定義:如圖,四邊形ABCD中,AB=AD,CB=CD像這樣兩組鄰邊分別相等的四邊形叫做“箏形”;
(1)小文認(rèn)為菱形是特殊的“箏形”,你認(rèn)為他的判斷正確嗎?
(2)小文根據(jù)學(xué)習(xí)幾何圖形的經(jīng)驗(yàn),通過觀察、實(shí)驗(yàn)、歸納、類比、猜想、證明等方法,對AB≠BC的“箏形”的性質(zhì)和判定方法進(jìn)行了探究.下面是小文探究的過程,請補(bǔ)充完成:
①他首先發(fā)現(xiàn)了這類“箏形”有一組對角相等,并進(jìn)行了證明,請你完成小文的證明過程.
已知:如圖,在”箏形”ABCD中,AB=AD,CB=CD.
求證:∠ABC=∠ADC.
證明:②小文由①得到了這類“箏形”角的性質(zhì),他進(jìn)一步探究發(fā)現(xiàn)這類“箏形”還具有其它性質(zhì),請再寫出這類“箏形”的一條性質(zhì)(除“箏形”的定義外);
③繼性質(zhì)探究后,小文探究了這類“箏形”的判定方法,寫出這類“箏形”的一條判定方法(除“箏形”的定義外):
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若平面直角坐標(biāo)系中的點(diǎn)作如下平移:沿x軸方向平移的數(shù)量為a(向右為正,向左為負(fù),平移|a|個單位),沿y軸方向平移的數(shù)量為b(向上為正,向下為負(fù),平移|b|個單位),則把有序數(shù)對{a,b}叫做這一平移的“平移量”.規(guī)定“平移量”{a,b}與“平移量”{c,d}的加法運(yùn)算法則為{a,b}+{c,d}={a+c,b+d}.
(1)若動點(diǎn)P從坐標(biāo)點(diǎn)M(1,1)出發(fā),按照“平移量”{2,0}平移到N,再按照“平移量”{1,2}平移到G,形成△MNG,則點(diǎn)N的坐標(biāo)為 , 點(diǎn)G的坐標(biāo)為 .
(2)若動點(diǎn)P從坐標(biāo)原點(diǎn)出發(fā),先按照“平移量”m平移到B,再按照“平移量”n平移到C;最后按照“平移量”q平移回到點(diǎn)O.當(dāng)△OBC∽△MNG(在(1)中的三角形).且相似比為2:1時,請你直接寫出“平移量”m , n , q .
(3)在(1)、(2)的前提下,請你在平面直角坐標(biāo)系中畫出△OBC與△MNG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)D是 AB邊上一點(diǎn),連接CD,將線段CD繞點(diǎn)C按順時針方向旋轉(zhuǎn)60°后得到CE,連接AE.求證:AE∥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,對角線AC , BD相交于點(diǎn)O , 且AC=6cm,BD=8cm,動點(diǎn)P , Q分別從點(diǎn)B , D同時出發(fā),運(yùn)動速度均為1cm/s,點(diǎn)P沿B→C→D運(yùn)動,到點(diǎn)D停止,點(diǎn)Q沿D→O→B運(yùn)動,到點(diǎn)O停止1s后繼續(xù)運(yùn)動,到點(diǎn)B停止,連接AP , AQ , PQ . 設(shè)△APQ的面積為y(cm2)(這里規(guī)定:線段是面積0的幾何圖形),點(diǎn)P的運(yùn)動時間為x(s).
(1)填空:AB=cm,AB與CD之間的距離為cm;
(2)當(dāng)4≤x≤10時,求y與x之間的函數(shù)解析式;
(3)直接寫出在整個運(yùn)動過程中,使PQ與菱形ABCD一邊平行的所有x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點(diǎn)C的坐標(biāo)為(1,0),頂點(diǎn)A的坐標(biāo)為(0,2),頂點(diǎn)B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點(diǎn)A恰好落在該雙曲線上時停止運(yùn)動,則此時點(diǎn)C的對應(yīng)點(diǎn)C′的坐標(biāo)為( )
A.( ,0)
B.(2,0)
C.( ,0)
D.(3,0)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com