【題目】如圖,三角形紙片中,AB=8cm,BC=6cm,AC=5cm.沿過點B的直線折疊這個三角形,使點C落在AB邊上的點E處,折痕為BD,求△ADE的周長.
【答案】解:∵BC沿BD折疊點C落在AB邊上的點E處,
∴DE=CD,BE=BC,
∵AB=8cm,BC=6cm,
∴AE=AB﹣BE=AB﹣BC=8﹣6=2cm,
∴△ADE的周長=AD+DE+AE,
=AD+CD+AE,
=AC+AE,
=5+2,
=7cm.
【解析】根據(jù)翻折變換的性質(zhì)可得DE=CD,BE=BC,然后求出AE,再根據(jù)三角形的周長列式求解即可.
【考點精析】根據(jù)題目的已知條件,利用翻折變換(折疊問題)的相關(guān)知識可以得到問題的答案,需要掌握折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等.
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 中,點在邊上, ⊥, ⊥,垂足分別是、,∠1=∠2.
(1)與平行嗎?為什么?
(2)若∠=51°,∠=54°,求∠的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了深化課程改革,省實驗積極開展校本課程建設(shè),計劃成立“增量閱讀”、“趣味數(shù)學”、“音樂舞蹈”和“戲劇英語”等多個社團,要求每位學生都自主選擇其中一個社團,為此,隨機調(diào)查了初中部分學生選擇社團的意向.并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖表(不完整):
選擇意向 | 增量閱讀 | 趣味數(shù)學 | 音樂舞蹈 | 戲曲英語 | 其他 |
所占百分比 | a | 20% | b | 10% | 5% |
根據(jù)統(tǒng)計圖表的信息,解答下列問題:
(l)求本次抽樣調(diào)查的學生總?cè)藬?shù)及a、b的值:
(2)將條形統(tǒng)計圖補充完整;
(3)若該校共有5000名學生,試估計全校選擇“音樂舞蹈”社團的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,銳角△ABC中,分別以AB、AC為邊向外作等邊△ABE和等邊△ACD,連接BD,CE,試猜想BD與CE的大小關(guān)系,并說明理由.
【深入探究】
(2)如圖2,△ABC中,∠ABC=45°,AB=5cm,BC=3cm,分別以AB、AC為邊向外作正方形ABNE和正方形ACMD,連接BD,求BD的長.
(3)如圖3,在(2)的條件下,以AC為直角邊在線段AC的左側(cè)作等腰直角△ACD,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠C=90°,BC=CD=8,過點B作EB⊥AB,交CD于點E.若DE=6,則AD的長為( )
A.6
B.8
C.9
D.10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線DE交BC于D,交AB于E,F在DE上,并且AF=CE.
(1)求證:四邊形ACEF是平行四邊形;
(2)當∠B滿足什么條件時,四邊形ACEF是菱形?請回答并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】按圖填空,并注明理由.
⑴完成正確的證明:如圖,已知AB∥CD,求證:∠BED=∠B+∠D
證明:過E點作EF∥AB(經(jīng)過直線外一點有且只有一條直線與這條直線平行)
∴∠1= ( )
∵AB∥CD(已知)
∴EF∥CD(如果兩條直線與同一直線平行,那么它們也平行)
∴∠2= ( )
又∠BED=∠1+∠2
∴∠BED=∠B+∠D (等量代換).
⑵如圖,在△ABC中,EF∥AD,∠1=∠2,∠BAC=70°.將求∠AGD的過程填寫完整.
解:因為EF∥AD(已知)
所以∠2=∠3.( )
又因為∠1=∠2,所以∠1=∠3.(等量代換)
所以AB∥ ( )
所以∠BAC+ =180°( ).
又因為∠BAC=70°,所以∠AGD=110°.
圖⑴ 圖⑵
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知圓的半徑是5cm,如果圓心到直線的距離是4cm,那么直線和圓的位置關(guān)系是( )
A.相離B.相交C.相切D.內(nèi)含
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com