【題目】如圖,扇形OAB中,∠AOB=90°,將扇形OAB繞點B逆時針旋轉(zhuǎn),得到扇形BDC,若點O剛好落在弧AB上的點D處,則的值為( )
A.B.C.D.
【答案】A
【解析】
如圖,連OD、AB、BC,延長AD交BC于H點,由旋轉(zhuǎn)的性質(zhì)可得BD=BO=OD=CD=OA,∠BDC=90°,可證△ABC是等邊三角形,由線段垂直平分線的性質(zhì)可得AH垂直平分BC,由等腰直角三角形的性質(zhì)和等邊三角形的性質(zhì)可得AC=2CH,AD=CH-CH,即可求解.
解:如圖,連OD、AB、BC,延長AD交BC于H點,
∵將扇形OAB繞點B逆時針旋轉(zhuǎn),得到扇形BDC,若點O剛好落在弧AB上的點D處,
∴BD=BO=OD=CD=OA,∠BDC=90°
∴∠OBD=60°,即旋轉(zhuǎn)角為60°,
∴∠ABC=60°,又可知AB=BC,
∴△ABC是等邊三角形,
∵AB=AC,BD=CD,
∴AH垂直平分BC,
∴∠CAH=30°,
∴AC=2CH,AH=CH,
∵BD=CD,∠BDC=90°,DH⊥BC,
∴DH=CH,
∴AD=CH﹣CH,
∴=.
故選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑AC是弦,∠BAC的平分線AD交⊙O于點D,DE⊥AC交AC的延長線于點E,連接OE,OE交AD于點F.
(1)求證:DE是⊙O的切線;
(2)若,求的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的頂點A、B在x軸的正半軸上,反比例函數(shù)y=(k≠0)在第一象限內(nèi)的圖象經(jīng)過點D,交BC于點E.若AB=4,CE=2BE,tan∠AOD=,則k的值_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校九年級男生的體能情況,體育老師從中隨機抽取部分男生進行引體向上測試,并對成績進行了統(tǒng)計,繪制成尚不完整的扇形圖和條形圖,根據(jù)圖形信息回答下列問題:
(1)本次抽測的男生有________人,抽測成績的眾數(shù)是_________;
(2)請將條形圖補充完整;
(3)若規(guī)定引體向上6次以上(含6次)為體能達標(biāo),則該校125名九年級男生中估計有多少人體能達標(biāo)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,并完成相應(yīng)任務(wù).
古希臘數(shù)學(xué)家,天文學(xué)家歐多克索斯(Eudoxus,約前400—前347)曾提出:能否將一
條線段分成不相等的兩部分.使較短線段與較長線段的比等于較長線段與原線段的比,這個相等的比就是,黃金分割在我們生活中有廣泛運用.黃金分割點也可以用折紙的方式得到.
第一步:裁一張正方形的紙片,先折出的中點,然后展平,再折出線段,再展平;
第二步:將紙片沿折疊,使落到線段上,的對應(yīng)點為,展平;
第三步:沿折疊,使落在上,的對應(yīng)點為,展平,這時就是的黃金分割點.
古希臘數(shù)學(xué)家,天文學(xué)家歐多克索斯(Eudoxus,約前400—前347)曾提出:能否將一
條線段分成不相等的兩部分.使較短線段與較長線段的比等于較長線段與原線段的比,這個相等的比就是,黃金分割在我們生活中有廣泛運用.黃金分割點也可以用折紙的方式得到.
第一步:裁一張正方形的紙片,先折出的中點,然后展平,再折出線段,再展平;
第二步:將紙片沿
第三步:沿折疊,使落在上,的對應(yīng)點為,展平,這時就是的黃金分割點.
任務(wù):(1)試根據(jù)以上操作步驟證明就是的黃金分割點;
(2)請寫出一個生活中應(yīng)用黃金分割的實際例子.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)的圖像與一次函數(shù)的圖像交于兩點,.
(1)求反比例函數(shù)與一次函數(shù)的函數(shù)表達式;
(2)在反比例函數(shù)的圖像上找點,使得點構(gòu)成以為底的等腰三角形,請求出所有滿足條件的點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+ax+3的頂點為P,它分別與x軸的負(fù)半軸、正半軸交于點A,B,與y軸正半軸交于點C,連接AC,BC,若tan∠OCB﹣tan∠OCA=.
(1)求a的值;
(2)若過點P的直線l把四邊形ABPC分為兩部分,它們的面積比為1:2,求該直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個函數(shù)當(dāng)自變量在不同范圍內(nèi)取值時,函數(shù)表達式不同,我們稱這樣的函數(shù)為分段函數(shù).下面我們參照學(xué)習(xí)函數(shù)的過程與方法,探究分段函數(shù)的圖象與性質(zhì).列表:
描點:在平面直角坐標(biāo)系中,以自變量x的取值為橫坐標(biāo),以相應(yīng)的函數(shù)值y為縱坐標(biāo),描出相應(yīng)的點,如圖所示.
如圖,在平面直角坐標(biāo)系中,觀察描出的這些點的分布,作出函數(shù)圖象;
研究函數(shù)并結(jié)合圖象與表格,回答下列問題:
點,,,在函數(shù)圖象上,則______,______;填“”,“”或“”
當(dāng)函數(shù)值時,求自變量x的值;
在直線的右側(cè)的函數(shù)圖象上有兩個不同的點,,且,求的值;
若直線與函數(shù)圖象有三個不同的交點,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的進價為每件40元,現(xiàn)在的售價為每件60元,每星期可賣出300件.市場調(diào)查反映:如果調(diào)查價格,每漲價1元,每星期要少賣出10件;每降價1元,每星期可多賣出20件.
(1)直接寫出每周售出商品的利潤y(單位:元)與每件降價x(單位:元)之間的函數(shù)關(guān)系式,直接寫出自變量x的取值范圍;
(2)漲價多少元時,每周售出商品的利潤為2250元;
(3)直接寫出使每周售出商品利潤最大的商品的售價.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com