【題目】探究函數(shù)y=x+ 的圖象與性質(zhì)
(1)函數(shù)y=x+ 的自變量x的取值范圍是;
(2)下列四個函數(shù)圖象中,函數(shù)y=x+ 的圖象大致是
(3)對于函數(shù)y=x+ ,求當(dāng)x>0時,y的取值范圍.
請將下面求解此問題的過程補充完整:
解:∵x>0
∴y=x+
=( )2+( )2
=( ﹣ )2+
∵( ﹣ )2≥0,
∴y .
(4)若函數(shù)y= ,則y的取值范圍是
【答案】
(1)x≠0
(2)C
(3)6;≥6
【拓展運用】
(4)y≤﹣11或y≥1
【解析】解:(1)∵在y=x+ 中,x≠0,
∴x的取值范圍是x≠0.
所以答案是:x≠0.(2)∵x≠0,
∴A中圖象不符合題意;
∵當(dāng)x>0時,x+ >0,
當(dāng)x<0時,x+ <0,
∴函數(shù)y=x+ 的圖象在第一、三象限,
∴B、D中圖象不符合題意,
故選C.(3)解:∵x>0,
∴y=x+ ,
=( )2+( )2 ,
=( ﹣ )2+6,
∵( ﹣ )2≥0,
∴y≥6.
所以答案是:6;≥6.(4)y= =x+ ﹣5.
由(3)可知:當(dāng)x>0時,x+ ≥6;
當(dāng)x<0時,x+ ≤﹣6.
∴y=x+ ﹣5≥6﹣5=1,y=x+ ﹣5≤﹣6﹣5=﹣11.
y的取值范圍是y≤﹣11或y≥1.
所以答案是:y≤﹣11或y≥1.
【考點精析】根據(jù)題目的已知條件,利用反比例函數(shù)的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握性質(zhì):當(dāng)k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減; 當(dāng)k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一路燈距地面5.6米,身高1.6米的小方從距離燈的底部(點O)5米的A處,沿OA所在的直線行走到點C時,人影長度增長3米,則小方行走的路程AC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于點E,點F在AC上,且BD=DF.
(1)求證:CF=EB;
(2)請你判斷AE、AF與BE之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一列有序數(shù)對:(1,2),(4,5),(9,10),(16,17),…,按此規(guī)律,第5對有序數(shù)對為;若在平面直角坐標(biāo)系xOy中,以這些有序數(shù)對為坐標(biāo)的點都在同一條直線上,則這條直線的表達(dá)式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,對角線AC,BD相交于點O,AB=5,AC=6,BD=8.
(1)求證:四邊形ABCD是菱形;
(2)過點A作AH⊥BC于點H,求AH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,對角線AC,BD相交于點O,AB=5,AC=6,BD=8.
(1)求證:四邊形ABCD是菱形;
(2)過點A作AH⊥BC于點H,求AH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰直角三角形ABC中,AB=AC,∠BAC=90°.點P為直線AB上一個動點(點P不與點A,B重合),連接PC,點D在直線BC上,且PD=PC.過點P作PE^PC,點D,E在直線AC的同側(cè),且PE=PC,連接BE.
(1)情況一:當(dāng)點P在線段AB上時,圖形如圖1 所示;
情況二:如圖2,當(dāng)點P在BA的延長線上,且AP<AB時,請依題意補全圖2;.
(2)請從問題(1)的兩種情況中,任選一種情況,完成下列問題:
①求證:∠ACP=∠DPB;
②用等式表示線段BC,BP,BE之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)在一個變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值和它對應(yīng),那么就說y是x的函數(shù),記作y=f(x).在函數(shù)y=f(x)中,當(dāng)自變量x=a時,相應(yīng)的函數(shù)值y可以表示為f(a).
例如:函數(shù)f(x)=x2﹣2x﹣3,當(dāng)x=4時,f(4)=42﹣2×4﹣3=5在平面直角坐標(biāo)系xOy中,對于函數(shù)的零點給出如下定義:
如果函數(shù)y=f(x)在a≤x≤b的范圍內(nèi)對應(yīng)的圖象是一條連續(xù)不斷的曲線,并且f(a).f(b)<0,那么函數(shù)y=f(x)在a≤x≤b的范圍內(nèi)有零點,即存在c(a≤c≤b),使f(c)=0,則c叫做這個函數(shù)的零點,c也是方程f(x)=0在a≤x≤b范圍內(nèi)的根.
例如:二次函數(shù)f(x)=x2﹣2x﹣3的圖象如圖1所示.
觀察可知:f(﹣2)>0,f(1)<0,則f(﹣2).f(1)<0.所以函數(shù)f(x)=x2﹣2x﹣3在﹣2≤x≤1范圍內(nèi)有零點.由于f(﹣1)=0,所以,﹣1是f(x)=x2﹣2x﹣3的零點,﹣1也是方程x2﹣2x﹣3=0的根.
(1)觀察函數(shù)y1=f(x)的圖象2,回答下列問題:
①f(a)f(b) 0(“<”“>”或“=”)
②在a≤x≤b范圍內(nèi)y1=f(x)的零點的個數(shù)是 .
(2)已知函數(shù)y2=f(x)=﹣ 的零點為x1 , x2 , 且x1<1<x2 .
①求零點為x1 , x2(用a表示);
②在平面直角坐標(biāo)xOy中,在x軸上A,B兩點表示的數(shù)是零點x1 , x2 , 點 P為線段AB上的一個動點(P點與A、B兩點不重合),在x軸上方作等邊△APM和等邊△BPN,記線段MN的中點為Q,若a是整數(shù),求拋物線y2的表達(dá)式并直接寫出線段PQ長的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題原型:如圖①,在等腰直角三角形ABC中,∠ACB=90°,BC=a.將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,連結(jié)CD.過點D作△BCD的BC邊上的高DE, 易證△ABC≌△BDE,從而得到△BCD的面積為 .
初步探究:如圖②,在Rt△ABC中,∠ACB=90°,BC=a.將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,連結(jié)CD.用含a的代數(shù)式表示△BCD的面積,并說明理由.
簡單應(yīng)用:如圖③,在等腰三角形ABC中,AB=AC,BC=a.將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,連結(jié)CD.直接寫出△BCD的面積.(用含a的代數(shù)式表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com