【題目】如圖1,平面直角坐標(biāo)系中,B、C兩點(diǎn)的坐標(biāo)分別為B(0,3)和C(0,﹣),點(diǎn)A在x軸正半軸上,且滿足∠BAO=30°.
(1)過點(diǎn)C作CE⊥AB于點(diǎn)E,交AO于點(diǎn)F,點(diǎn)G為線段OC上一動(dòng)點(diǎn),連接GF,將△OFG沿FG翻折使點(diǎn)O落在平面內(nèi)的點(diǎn)O′處,連接O′C,求線段OF的長以及線段O′C的最小值;
(2)如圖2,點(diǎn)D的坐標(biāo)為D(﹣1,0),將△BDC繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使得BC⊥AB于點(diǎn)B,將旋轉(zhuǎn)后的△BDC沿直線AB平移,平移中的△BDC記為△B′D′C′,設(shè)直線B′C′與x軸交于點(diǎn)M,N為平面內(nèi)任意一點(diǎn),當(dāng)以B′、D′、M、N為頂點(diǎn)的四邊形是菱形時(shí),求點(diǎn)M的坐標(biāo).
【答案】(1) ;(2)或或或
【解析】
(1)解直角三角形求出OF,CF,根據(jù)CO′≥CF﹣O′F求解即可.
(2)分四種情形:①如圖2中,當(dāng)B′D′=B′M=BD=時(shí),可得菱形MND′B′.②如圖3中,當(dāng)B′M是菱形的對(duì)角線時(shí).③如圖4中,當(dāng)B′D′是菱形的對(duì)角線時(shí).④如圖5中,當(dāng)MD′是菱形的對(duì)角線時(shí),分別求解即可解決問題.
(1)如圖1中,
∵∠AOB=90°,∠OAB=30°,
∴∠CBE=60°,
∵CE⊥AB,
∴∠CEB=90°,∠BCE=30°,
∵C(0,-),
∴OC=,OF=OCtan30°=,CF=2OF=3,
由翻折可知:FO′=FO=,
∴CO′≥CF-O′F,
∴CO′≥,
∴線段O′C的最小值為.
(2)①如圖2中,當(dāng)B′D′=B′M=BD=時(shí),可得菱形MND′B′.
在Rt△AMB′中,AM=2B′M=2,
∴OM=AM-OA=2-3,
∴M(3-2,0).
②如圖3中,當(dāng)B′M是菱形的對(duì)角線時(shí),由題意B′M=2OB=6,此時(shí)AM=12,OM=123,可得M(3-12,0).
③如圖4中,當(dāng)B′D′是菱形的對(duì)角線時(shí),由∠D′B′M=∠DBO
可得,所以B′M=
則在RT△AM B′中,AM=2B′M=,所以OM=OA-AM=3-,所以M(3-,0).
④如圖5中,當(dāng)MD′是菱形的對(duì)角線時(shí),MB′=B′D′=,可得AM=2,OM=OA+AM=3+2,所以M(3+2,0).
綜上所述,滿足條件的點(diǎn)M的坐標(biāo)為(3+2,0)或(3-12,0)或(3-,0)或(3+2,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC和△DEF是兩個(gè)等腰直角三角形,∠A=∠D=90°,△DEF的頂點(diǎn)E位于邊BC的中點(diǎn)上.
(1)如圖1,設(shè)DE與AB交于點(diǎn)M,EF與AC交于點(diǎn)N,求證:△BEM∽△CNE;
(2)如圖2,將△DEF繞點(diǎn)E旋轉(zhuǎn),使得DE與BA的延長線交于點(diǎn)M,EF與AC交于點(diǎn)N,于是,除(1)中的一對(duì)相似三角形外,能否再找出一對(duì)相似三角形并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C、D在⊙O上,點(diǎn)E在⊙O外,∠EAC=∠D=60°.
(1)求證:AE是⊙O的切線;
(2) 連接OC,當(dāng)BC=3時(shí),求劣弧AC的長和扇形B0C的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一元二次方程中,有著名的韋達(dá)定理:對(duì)于一元二次方程ax2+bx+c=0(a≠0),如果方程有兩個(gè)實(shí)數(shù)根x1,x2,那么x1+x2=﹣,x1x2=(說明:定理成立的條件△≥0).比如方程2x2﹣3x﹣1=0中,△=17,所以該方程有兩個(gè)不等的實(shí)數(shù)解.記方程的兩根為x1,x2,那么x1+x2=,x1x2=﹣,請(qǐng)根據(jù)閱讀材料解答下列各題:
(1)已知方程x2﹣3x﹣2=0的兩根為x1、x2,且x1>x2,求下列各式的值:
①x12+x22;②;
(2)已知x1,x2是一元二次方程4kx2﹣4kx+k+1=0的兩個(gè)實(shí)數(shù)根.
①是否存在實(shí)數(shù)k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,請(qǐng)說明理由.
②求使的值為整數(shù)的實(shí)數(shù)k的整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)在促銷活動(dòng)中規(guī)定,顧客每消費(fèi)100元就能獲得一次抽獎(jiǎng)機(jī)會(huì).為了活躍氣氛,設(shè)計(jì)了兩個(gè)抽獎(jiǎng)方案:
方案一:轉(zhuǎn)動(dòng)轉(zhuǎn)盤A一次,轉(zhuǎn)出紅色可領(lǐng)取一份獎(jiǎng)品;
方案二:轉(zhuǎn)動(dòng)轉(zhuǎn)盤B兩次,兩次都轉(zhuǎn)出紅色可領(lǐng)取一份獎(jiǎng)品.(兩個(gè)轉(zhuǎn)盤都被平均分成3份)如果你獲得一次抽獎(jiǎng)機(jī)會(huì),你會(huì)選擇哪個(gè)方案?請(qǐng)用相關(guān)的數(shù)學(xué)知識(shí)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段拋物線:,記為,它與軸交于兩點(diǎn),:將繞旋轉(zhuǎn)得到,交軸于:將繞旋轉(zhuǎn)得到,交軸于.過拋物線,頂點(diǎn)的直線與,,圍成的如圖中的陰影部分,那么該面積為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形中,AB=8,BC=6,過對(duì)角線中點(diǎn)的直線分別交,邊于點(diǎn),.
(1)求證:四邊形是平行四邊形;
(2)當(dāng)四邊形是菱形時(shí),求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半徑為5的扇形AOB中,∠AOB=90°,點(diǎn)C是弧AB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、B重合)OD⊥BC,OE⊥AC,垂足分別為D、E.
(1)當(dāng)BC=6時(shí),求線段OD的長;
(2)在△DOE中是否存在長度保持不變的邊?如果存在,請(qǐng)指出并求其長度;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com