【題目】如圖,中,,是中線,,則_____
【答案】
【解析】
作CH⊥AD于H,延長AD到E使DE=AD=7,連接CE,作EF⊥AC于F,如圖,先證明△ADB≌△EDC,得到EC=AB=10,再利用△AEF為等腰直角三角形,計算出AF=EF=,則根據勾股定理可計算出CF=,從而得到AC=,接著利用△ACH為等腰直角三角形,得到AH=CH=6,然后利用勾股定理計算出CD,從而得到BC的長.
解:作CH⊥AD于H,延長AD到E使DE=AD=7,連接CE,作EF⊥AC于F,如圖,
∵AD是中線,
∴BD=CD,
在△ADB和△EDC中
,
∴△ADB≌△EDC(SAS),
∴EC=AB=10,
在RtAEF中,∵∠DAC=45°,AE=14,
∴AF=EF=AE=,
在Rt△CEF中,,
∴AC=AF-CF=,
在Rt△ACH中,∵∠HAC=45°,
∴AH=CH=AC=6,
∴DH=AD-AH=1,
在Rt△CDH中,CD=
∴BC=2CD=,
故答案為:.
科目:初中數學 來源: 題型:
【題目】哈市在迎接文明城市檢查期間,提出了核心價值觀“包容、尚德、守法、誠信、卓越”.為了了解學生對城市核心 價值觀中哪一項內容最感興趣,對某所中學的學生抽查:隨機抽取了部分學生進行調查,并將調查結果繪成如圖 統(tǒng)計圖.請你結合圖中信息解答下列問題:
(1)該校共調查了多少名學生,并補全條形統(tǒng)計圖;
(2)如果全校有學生 2500 人,請你估計全校中 對“誠信”最感興趣的學生有多少名?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,有下列結論:①b2﹣4ac>0; ②abc>0; ③8a+c<0; ④9a+3b+c>0.其中,正確結論的個數( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某賓館擁有客房100間,經營中發(fā)現(xiàn):每天入住的客房數y(間)與房價x(元)(180≤x≤300)滿足一次函數關系,部分對應值如下表:
x(元) | 180 | 260 | 280 | 300 |
y(間) | 100 | 60 | 50 | 40 |
(1)求y與x之間的函數表達式;
(2)已知每間入住的客房,賓館每日需支出各種費用100元;每間空置的客房,賓館每日需支出各種費用60元.當房價為多少元時,賓館當日利潤最大?求出最大利潤.(賓館當日利潤=當日房費收入-當日支出)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某工程隊在工地上利用互相垂直的兩墻AE、AF,另兩邊用鐵柵欄圍成一個長方形場地ABCD,中間再用柵欄分割成兩個長方形.鐵柵欄總長180米,已知墻AE長90米,墻AF長60米.
(1)設BC長為x米,長方形ABCD的面積為y,請寫出y與x的函數關系,并寫出x的取值范圍;
(2)當BC的值為多少時,長方形ABCD的面積最大?
(3)若長方形ABCD的面積不能小于4000,請直接寫出BC邊長x(米)的取值范圍 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC的頂點坐標分別為A(0,1)、B(3,3)、C(1,3).
(1) 畫出△ABC關于點O的中心對稱圖形△A1B1C1
(2) 畫出△ABC繞原點O逆時針旋轉90°的△A2B2C2,直接寫出點C2的坐標為______.
(3) 若△ABC內一點P(m,n)繞原點O逆時針旋轉90°的對應點為Q,則Q的坐標為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的方程 x2﹣(2k+1)x+4(k﹣)=0.若等腰三角形ABC的一邊長a=4,另兩邊邊長b、c恰好是這個方程的兩個實數根,則△ABC的周長為_____.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com