【題目】如圖,在中,,,且,那么的度數(shù)是__________

【答案】18°

【解析】

AB+BD=DC,可以得到輔助線:在DC上截取DE=BD,連接AE;根據(jù)SAS證得△ADB≌△ADE,再利用全等三角形的對(duì)應(yīng)邊,對(duì)應(yīng)角相等,可得到∠B=∠AED,AE=AB;又由等量代換,證得△AEC是等腰三角形,利用等邊對(duì)等角,即可求得∠B∠C的關(guān)系,由三角形的內(nèi)角和是180°,即可求得結(jié)果.

解:在DC上截取DE=BD,連接AE,

∵AD⊥BC

∴∠ADB=∠ADE=90°,

∵AD=AD,

∴△ADB≌△ADE,

∴∠B=∠AED,AE=AB,

∵AB+BD=DC,DE+EC=DC

∴AE=AB=EC,

∴∠AEB=2∠EAC=2∠C,

∴∠B=2∠C,

∵∠BAC=126°,∠B+∠C+∠BAC=180°,

∴3∠C=54°,

∴∠C=18°

故答案為:18°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)C為線段AB上一點(diǎn),分別以AC、BC為邊在線段AB同側(cè)作△ACD△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直線AEBD交于點(diǎn)F,

(1)如圖1,若∠ACD=60°,則∠AFB=   ;如圖2,若∠ACD=90°,則∠AFB=   ;如圖3,若∠ACD=120°,則∠AFB=   

(2)如圖4,若∠ACD=α,則∠AFB=   (用含α的式子表示);

(3)將圖4中的△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)任意角度(交點(diǎn)F至少在BD、AE中的一條線段上),變成如圖5所示的情形,若∠ACD=α,則∠AFBα的有何數(shù)量關(guān)系?并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C,DAB同側(cè),∠CAB=DBA,下列條件中不能判定ABD≌△BAC的是( 。

A. D=C B. BD=AC C. CAD=DBC D. AD=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,都是等邊三角形,交于點(diǎn)

1)求證:;

2)下列結(jié)論中,正確的有________個(gè).

;②;③平分;④平分

3)請(qǐng)選擇(2)中任一正確結(jié)論進(jìn)行證明.你選的序號(hào)是 _________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的半徑為6cm,B⊙O外一點(diǎn),OB⊙O于點(diǎn)A,AB=OA,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以π cm/s的速度在⊙O上按逆時(shí)針?lè)较蜻\(yùn)動(dòng)一周回到點(diǎn)A立即停止.當(dāng)點(diǎn)P運(yùn)動(dòng)的時(shí)間為______時(shí),BP⊙O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB、BC、CD分別與⊙O相切于E、F、G,且ABCD,OB=6cm,OC=8cm.求:

(1)BOC的度數(shù);

(2)BE+CG的長(zhǎng);

(3)O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長(zhǎng)都為m的大正方形,兩塊是邊長(zhǎng)都為n的小正方形,五塊是長(zhǎng)為m,寬為n的全等小矩形,且mn.(以上長(zhǎng)度單位:cm

1)用含m,n的代數(shù)式表示所有裁剪線(圖中虛線部分)的長(zhǎng)度之和;

2)觀察圖形,發(fā)現(xiàn)代數(shù)式2m2+5mn+2n2可以因式分解為   

3)若每塊小矩形的面積為10cm2,四個(gè)正方形的面積和為58cm2,試求(m+n2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AC、BD是四邊形ABCD的對(duì)角線,若EF、G、H分別是BD、BC、AC、AD的中點(diǎn),順次連接E、F、G、H四點(diǎn),得到四邊形EFGH,則下列結(jié)論不正確的是( 。

A.四邊形EFGH一定是平行四邊形B.當(dāng)AB=CD時(shí),四邊形EFGH是菱形

C.當(dāng)ACBD時(shí),四邊形EFGH是矩形D.四邊形EFGH可能是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:在等邊△ABC中,DE分別在AB、AC上,且AD=CE,BE、CD相交于點(diǎn)P

1)說(shuō)明△ADC≌△CEB的理由;

2)求∠BPC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案