【題目】如圖,一個(gè)二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A、C、B三點(diǎn),點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)B的坐標(biāo)為(3,0),點(diǎn)C在y軸的正半軸上,且AB=OC.

(1)求點(diǎn)C的坐標(biāo);
(2)求這個(gè)二次函數(shù)的解析式,并求出該函數(shù)的最大值.

【答案】
(1)解:∵A(﹣1,0)、B(3,0),

∴AO=1,OB=3,即AB=AO+OB=1+3=4.

∴OC=4,即點(diǎn)C的坐標(biāo)為(0,4)


(2)解:設(shè)圖象經(jīng)過(guò)A、C、B三點(diǎn)的二次函數(shù)的解析式為y=ax2+bx+c,把A、C、B三點(diǎn)的坐標(biāo)分別代入上式,

,

解得a=﹣ ,b= x,c=4,

∴所求的二次函數(shù)解析式為y=﹣ x2+ x+4.

∵點(diǎn)A、B的坐標(biāo)分別為點(diǎn)A(﹣1,0)、B(3,0),

∴線段AB的中點(diǎn)坐標(biāo)為(1,0),即拋物線的對(duì)稱(chēng)軸為直線x=1.

∵a=﹣ <0,

∴當(dāng)x=1時(shí),y有最大值y=﹣ + +4=


【解析】(1)首先求得AB,得出OC,求得點(diǎn)C的坐標(biāo);(2)利用待定系數(shù)法求的函數(shù)解析式,進(jìn)一步利用頂點(diǎn)坐標(biāo)公式求得最值即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣6,0)、B(﹣2,3)、
C(﹣1,0).

(1)請(qǐng)直接寫(xiě)出與點(diǎn)B關(guān)于坐標(biāo)原點(diǎn)O的對(duì)稱(chēng)點(diǎn)B1的坐標(biāo);
(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°.畫(huà)出對(duì)應(yīng)的△A′B′C′圖形,直接寫(xiě)出點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo);
(3)若四邊形A′B′C′D′為平行四邊形,請(qǐng)直接寫(xiě)出第四個(gè)頂點(diǎn)D′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將長(zhǎng)方形ABCD對(duì)折,得折痕PQ,展開(kāi)后再沿MN翻折,使點(diǎn)C恰好落在折痕PQ上的點(diǎn)C′處,點(diǎn)D落在D′處,其中MBC的中點(diǎn)且MN與折痕PQ交于F.連接AC′,BC′,則圖中共有等腰三角形的個(gè)數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)①畫(huà)出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1;
②畫(huà)出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱(chēng)的△A2B2C2;

(2)求△A2B2C2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論
①a>0,②b>0,③c>0,④b2﹣4ac>0
其中正確的有(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形的頂點(diǎn)的坐標(biāo)為,點(diǎn)軸正半軸上,點(diǎn)在第三象限的雙曲線上,過(guò)點(diǎn)軸交雙曲線于點(diǎn),連接,則的面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知 AB 是⊙O 的直徑,點(diǎn) C、D 在⊙O 上,過(guò) D 點(diǎn)作 PF∥AC交⊙O 于 F,交 AB 于點(diǎn) E,∠BPF=∠ADC

(1)求證:AEEB=DEEF.

(2)求證:BP 是⊙O 的切線:

(3)當(dāng)?shù)陌霃綖?/span>,AC=2,BE=1 時(shí),求 BP 的長(zhǎng),

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校學(xué)生會(huì)為了解本校初中學(xué)生每天做作業(yè)所用時(shí)間情況,采用問(wèn)卷的方式對(duì)一部分學(xué)生進(jìn)行調(diào)查.在確定調(diào)查對(duì)象時(shí),大家提出以下幾種方案:A.對(duì)各班班長(zhǎng)進(jìn)行調(diào)查;B.對(duì)某班的全體學(xué)生進(jìn)行調(diào)查;C.從全校每班隨機(jī)抽取5名學(xué)生進(jìn)行調(diào)查.在問(wèn)卷調(diào)查時(shí),每位被調(diào)查的學(xué)生都選擇了問(wèn)卷中適合自己的一個(gè)時(shí)間,學(xué)生會(huì)將收集到的數(shù)據(jù)整理后繪制成如圖所示的條形統(tǒng)計(jì)圖.

(1)為了使收集到的數(shù)據(jù)具有代表性.學(xué)生會(huì)在確定調(diào)查對(duì)象時(shí)應(yīng)選擇方案________ (A,BC);

(2)被調(diào)查的學(xué)生每天做作業(yè)所用時(shí)間的眾數(shù)為________h;

(3)根據(jù)以上統(tǒng)計(jì)結(jié)果,估計(jì)該校900名初中學(xué)生中每天做作業(yè)用1.5 h的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,DBC邊上一點(diǎn),∠B=30°DAB=45°.(1)求∠DAC的度數(shù);(2)請(qǐng)說(shuō)明:AB=CD.

查看答案和解析>>

同步練習(xí)冊(cè)答案