如圖,正方形ABCD的邊長是2,∠DAC的平分線交DC于點E,若點P、Q分別是AD和AE上的動點,則DQ+PQ的最小值為     
.

試題分析:過D作AE的垂線交AE于F,交AC于D′,再過D′作D′P′⊥AD,由角平分線的性質可得出D′是D關于AE的對稱點,進而可知D′P′即為DQ+PQ的最小值.
作D關于AE的對稱點D′,再過D′作D′P′⊥AD于P′,

∵DD′⊥AE,
∴∠AFD=∠AFD′,
∵AF=AF,∠DAE=∠CAE,
∴△DAF≌△D′AF,
∴D′是D關于AE的對稱點,AD′=AD=2,
∴D′P′即為DQ+PQ的最小值,
∵四邊形ABCD是正方形,
∴∠DAD′=45°,
∴AP′=P′D′,
∴在Rt△AP′D′中,
P′D′2+AP′2=AD′2,AD′2=4,
∵AP′=P′D',
2P′D′2=AD′2,即2P′D′2=4,
∴P′D′=
,即DQ+PQ的最小值為
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知中,F(xiàn)是BC邊的中點,連接DF并延長,交AB的延長線于點E.求證:AB=BE.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖是由相同的小正方形組成的網格,A、B兩點都在小正方形的頂點上.現(xiàn)請你在圖1、圖2中各畫一個以A、B、C、D為頂點的菱形.要求:
(1)頂點C、D在小正方的頂點上;
(2)工具只用無刻度的直尺;
(3)所畫的兩個菱形不全等.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,在正方形ABCD中,點E為BC上一點,連接DE,把△DEC沿DE折疊得到△DEF,延長EF交AB于G,連接DG.
(1) 求證:∠EDG=45°.
(2)如圖2,E為BC的中點,連接BF.
①求證:BF∥DE;
②若正方形邊長為6,求線段AG的長.
(3) 當BE︰EC=         時,DE=DG.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

一個多邊形每個內角都相等,且一個外角等于一個內角的,這是個      邊形

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知□ABCD的對角線相交于點O,如果△AOB的面積是3,那么□ABCD的面積等于_________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

四邊形ABCD、AEFG都是正方形,當正方形AEFG繞點A逆時針旋轉45°時,如圖,連接DG、BE,并延長BE交DG于點H,且BH⊥DG與H.若AB=4,AE=時,則線段BH的長是  

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在給定的一張平行四邊形紙片上作一個菱形.甲、乙兩人的作法如下:
甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BC于M,O,N,連接AN,CM,則四邊形ANCM是菱形.
乙:分別作∠A,∠B的平分線AE,BF,分別交BC,AD于E,F(xiàn),連接EF,則四邊形ABEF是菱形.
根據兩人的作法可判斷( 。
A.甲正確,乙錯誤B.乙正確,甲錯誤
C.甲、乙均正確D.甲、乙均錯誤

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

四邊形ABCD是梯形,BD=AC且BD⊥AC,若AB=2,CD=4,則S梯形ABCD=________.

查看答案和解析>>

同步練習冊答案