【題目】在數(shù)學(xué)活動課上,老師提出了一個問題:把一副三角尺如圖1擺放,直角三角尺的兩條直角邊分別垂直或平行,60°角的頂點在另一個三角尺的斜邊上移動,在這個運動過程中,有哪些變量,能研究它們之間的關(guān)系嗎?
小林選擇了其中一對變量,根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對它們之間的關(guān)系進行了探究.下面是小林的探究過程,請補充完整:
(1)畫出幾何圖形,明確條件和探究對象;
如圖2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是線段AB上一動點,射線DE⊥BC于點E,∠EDF=_____°,射線DF與射線AC交于點F.設(shè)B,E兩點間的距離為xcm,E,F兩點間的距離為ycm.
(2)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y/cm | 6.9 | 5.3 | 4.0 | 3.3 | ____ | 4.5 | 6 |
(說明:補全表格時相關(guān)數(shù)據(jù)保留一位小數(shù))
(3)建立平面直角坐標(biāo)系,描出以補全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;
(4)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)△DEF為等邊三角形時,BE的長度約為_____cm.
【答案】(1)60;(2)3.5;(3)見解析;(4)3.2.
【解析】
(1)根據(jù)材料給出的條件:60°角的頂點在另一個三角尺的斜邊上移動,可得∠EDF=60°
(2)根據(jù)題中數(shù)據(jù),取點、畫圖、測量,得到數(shù)據(jù)為3.5
(3)根據(jù)題中數(shù)據(jù)畫出函數(shù)圖像即可
(4)當(dāng)△DEF為等邊三角形時,即y=x,當(dāng)(2)中圖象與直線y=x相交時,交點橫坐標(biāo)即為BE的長,通過測量可得結(jié)果.
解:(1) 根據(jù)材料給出的條件:60°角的頂點在另一個三角尺的斜邊上移動,可得∠EDF=60°,
(2)取點、畫圖、測量,得到數(shù)據(jù)為3.5
故答案為:3.5
(3)由數(shù)據(jù)得
(4)當(dāng)△DEF為等邊三角形時,EF=DE,由∠B=45°,射線DE⊥BC于點E,則BE=EF.即y=x
所以,當(dāng)(2)中圖象與直線y=x相交時,交點橫坐標(biāo)即為BE的長,由作圖、測量可知x約為3.2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某報刊銷售處從報社購進甲、乙兩種報紙進行銷售.已知從報社購進甲種報紙200份與乙種報紙300份共需360元,購進甲種報紙300份與乙種報紙200份共需340元
(1)求購進甲、乙兩種報紙的單價;
(2)已知銷售處賣出甲、乙兩種報紙的售價分別為每份1元、1.5元.銷售處每天從報社購進甲、乙兩種報紙共600份,若每天能全部銷售完并且銷售這兩種報紙的總利潤不低于300元,問該銷售處每天最多購進甲種報紙多少份?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)a是關(guān)于x的分式方程+=4的解為正數(shù),且使關(guān)于y,不等式組的解集為y<﹣2,則符合條件的所有整數(shù)a的和為___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=6,扇形BEF的半徑為6,圓心角為60°,則圖中陰影部分的面積是______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是高,BD=6,CD=4,tan∠BAD=,P是線段AD上一動點,一機器人從點A出發(fā)沿AD以個單位/秒的速度走到P點,然后以1個單位/秒的速度沿PC走到C點,共用了t秒,則t的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于實數(shù)m、n,定義一種運算“※”為:m※n=mn+n.
(1)求2※5與2※(﹣5)的值;
(2)如果關(guān)于x的方程x※(a※x)=﹣有兩個相等的實數(shù)根,求實數(shù)a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對稱軸為直線x=的拋物線經(jīng)過點A(6,0)和B(0,4).
(1)求拋物線表達式及頂點坐標(biāo);
(2)設(shè)點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以OA為對角線的平行四邊形.求平行四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)在(2)條件下,是否存在點E,使平行四邊形OEAF為正方形?若存在,求出點E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是本地區(qū)一種產(chǎn)品30天的銷售圖象,圖1是產(chǎn)品日銷售量y(單位:件)與時間t(單位:天)的函數(shù)關(guān)系,圖2是一件產(chǎn)品的銷售利潤z(單位:元)與時間t(單位:天)的函數(shù)關(guān)系,已知日銷售利潤=日銷售量×一件產(chǎn)品的銷售利潤,下列結(jié)論錯誤的是( )
A. 第24天的銷售量為200件 B. 第10天銷售一件產(chǎn)品的利潤是15元
C. 第12天與第30天這兩天的日銷售利潤相等 D. 第30天的日銷售利潤是750元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的口袋里裝有分別標(biāo)有數(shù)字﹣3、﹣1、0、2的四個小球,除數(shù)字不同外,小球沒有任何區(qū)別,每次實驗先攪拌均勻.
(1)從中任取一球,求抽取的數(shù)字為正數(shù)的概率;
(2)從中任取一球,將球上的數(shù)字記為a,求關(guān)于x的一元二次方程ax2﹣2ax+a+3=0有實數(shù)根的概率;
(3)從中任取一球,將球上的數(shù)字作為點的橫坐標(biāo),記為x(不放回);再任取一球,將球上的數(shù)字作為點的縱坐標(biāo),記為y,試用畫樹狀圖(或列表法)表示出點(x,y)所有可能出現(xiàn)的結(jié)果,并求點(x,y)落在第二象限內(nèi)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com