【題目】如圖是一個用來盛爆米花的圓錐形紙杯,紙杯開口圓的直徑EF長為10cm,母線OE(OF)長為10cm.在母線OF上的點A處有一塊爆米花殘渣,且FA=2cm,一只螞蟻從杯口的點E處沿圓錐表面爬行到A點,則此螞蟻爬行的最短距離cm.

【答案】2
【解析】解:因為OE=OF=EF=10(cm), 所以底面周長=10π(cm),
將圓錐側(cè)面沿OF剪開展平得一扇形,此扇形的半徑OE=10(cm),弧長等于圓錐底面圓的周長10π(cm)
設(shè)扇形圓心角度數(shù)為n,則根據(jù)弧長公式得:
10π=
所以n=180°,
即展開圖是一個半圓,
因為E點是展開圖弧的中點,
所以∠EOF=90°,
連接EA,則EA就是螞蟻爬行的最短距離,
在Rt△AOE中由勾股定理得,
EA2=OE2+OA2=100+64=164,
所以EA=2 (cm),
即螞蟻爬行的最短距離是2 (cm).

要求螞蟻爬行的最短距離,需將圓錐的側(cè)面展開,進而根據(jù)“兩點之間線段最短”得出結(jié)果.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列變形中:

①由方程=2去分母,得x﹣12=10;

②由方程x=兩邊同除以,得x=1;

③由方程6x﹣4=x+4移項,得7x=0;

④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).

錯誤變形的個數(shù)是( 。﹤

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)探究:如圖1,直線AB、BC、AC兩兩相交,交點分別為點A、B、C,點D在線段AB上,過點D作DE∥BC交AC于點E,過點E作EF∥AB交BC于點F.若∠ABC=40°,求∠DEF的度數(shù).

(2)應(yīng)用:如圖2,直線AB、BC、AC兩兩相交,交點分別為點A、B、C,點D在線段AB的延長線上,過點D作DE∥BC交AC于點E,過點E作EF∥AB交BC于點F.若∠ABC=60°,求∠DEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】烏蘇市某生態(tài)示范園,計劃種植一批蘋果梨,原計劃總產(chǎn)量達36萬千克,為了滿足市場需求,現(xiàn)決定改良蘋果梨品種,改良后平均每畝產(chǎn)量是原計劃的1.5倍,總產(chǎn)量比原計劃增加了9萬千克,種植畝數(shù)減少了20畝,則原計劃和改良后平均每畝產(chǎn)量各多少萬千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AC=4,BD=6,P是BD上的任一點,過點P作EF∥AC,與平行四邊形的兩條邊分別交于點E、F,設(shè)BP=x,EF=y,則能反映y與x之間關(guān)系的圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:求值:1+2+22+23+24++22013

解:設(shè)S=1+2+22+23+24++22013.將等式兩邊同時乘以2,得

2S=2+22+23+24++22013+22014

將下式減去上式,得2S﹣S=22014﹣1.

S=1+2+22+23+24++22013=22014﹣1.

請你仿照此法計算1+3+32+33+34++32018的值是( 。

A. 32018﹣1 B. C. 32019﹣1 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在300米環(huán)形跑道上練習(xí)長跑,甲的速度是6/秒,乙的速度是7/秒.

(1)如果甲、乙兩人同地背向跑,乙先跑2秒,再經(jīng)過多少秒兩人相遇?

(2)如果甲、乙兩人同地同向跑,乙跑幾圈后能首次追上甲?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=56°,∠ABC=74°,BP、CP分別平分∠ABC和∠ACB,則∠BPC=(
A.102°
B.112°
C.115°
D.118°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩會期間,記者隨機抽取參會的部分代表,對他們某天發(fā)言的次數(shù)進行了統(tǒng)計,其結(jié)果如表,并繪制了如圖所示的兩幅不完整的統(tǒng)計圖,請結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問題:

發(fā)言次數(shù)n

A

0≤n<3

B

3≤n<6

C

6≤n<9

D

9≤n<12

E

12≤n<15

F

15≤n<18


(1)求得樣本容量為 , 并補全直方圖;
(2)如果會議期間組織1700名代表參會,請估計在這一天里發(fā)言次數(shù)不少于12次的人數(shù);
(3)已知A組發(fā)表提議的代表中恰有1為女士,E組發(fā)表提議的代表中只有2位男士,現(xiàn)從A組與E組中分別抽一位代表寫報告,請用列表法或畫樹狀圖的方法,求所抽的兩位代表恰好都是男士的概率.

查看答案和解析>>

同步練習(xí)冊答案