(本題滿分12分)
如圖,I是△ABC的內(nèi)心,∠BAC的平分線與△ABC的外接圓相交于點(diǎn)D。BD與ID相等嗎?為什么?(12)
解:BD=ID連接BI
∵AD平分∠BAC∴∠BAD=∠CAD
∵∠DBC=∠CAD
∴∠BAD=∠DBC
∵∠BID=∠BAD+∠ABI
∠DBI=∠DBC+∠CBI
∠ABI=∠CBI
∴∠BID=∠DBI
∴BD=ID

試題分析:解:BD=ID連接BI
∵AD平分∠BAC∴∠BAD=∠CAD
∵∠DBC=∠CAD∴∠BAD=∠DBC
∵∠BID=∠BAD+∠ABI
∠DBI=∠DBC+∠CBI
∠ABI=∠CBI∴∠BID=∠DBI∴BD=ID
點(diǎn)評(píng):本題難度中等。運(yùn)用同弧的圓周角相等證明即可。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知:如圖,在⊙O中,AB是直徑,四邊形ABCD內(nèi)接于⊙O,
∠BCD=130°,過D點(diǎn)的切線PD與直線AB交于點(diǎn)P,則∠ADP的度數(shù)為(  )
A.45°B.40°C.50°D.65°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知⊙O的直徑AB⊥弦CD于點(diǎn)E,下列結(jié)論中一定正確的是
A.AE=OEB.CE=DEC.OE=CED.∠AOC=60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分,其中第(1)題4分,第(2)題的第?、?小題分別為4分、6分)
如圖1,在△ABC中,已知AB=15,cosB=,tanC=.點(diǎn)D為邊BC上的動(dòng)點(diǎn)(點(diǎn)D不與B、C重合),以D為圓心,BD為半徑的⊙D交邊AB于點(diǎn)E

(1)設(shè)BD=x,AE=y,求的函數(shù)關(guān)系式,并寫出函數(shù)定域義;
(2)如圖2,點(diǎn)F為邊AC上的動(dòng)點(diǎn),且滿足BD=CF,聯(lián)結(jié)DF
①當(dāng)△ABC和△FDC相似時(shí),求⊙D的半徑;
② 當(dāng)⊙D與以點(diǎn)F為圓心,FC為半徑⊙F外切時(shí),求⊙D的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AC為⊙O的直徑,AC=4,B、D分別在AC兩側(cè)的圓上,∠BAD=60°,BD與AC的交點(diǎn)為E.

(1)求點(diǎn)O到BD的距離及∠OBD的度數(shù);
(2)若DE=2BE,求的值和CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知的半徑分別是一元二次方程的兩根,且的位置關(guān)系是         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC中,∠B=60,∠ACB=75,點(diǎn)DBC邊上一動(dòng)點(diǎn),以AD為直徑作⊙O,分別交AB、ACEF,若弦EF的最小值為1,則AB的長(zhǎng)為
A.B.C.1.5D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

ΔABC的三邊長(zhǎng)分別為6、8、10,則其內(nèi)切圓和外接圓的半徑分別是          

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

           三角形的內(nèi)心又是它的外心;

查看答案和解析>>

同步練習(xí)冊(cè)答案