【題目】如圖,在某建筑物AC上,掛著一宣傳條幅BC,站在點(diǎn)F處,測(cè)得條幅頂端B的仰角為300,往條幅方向前行20米到達(dá)點(diǎn)E處,測(cè)得條幅頂端B的仰角為600,求宣傳條幅BC的長(zhǎng).,結(jié)果精確到0.1米)

【答案】宣傳條幅BC的長(zhǎng)為17.3.

【解析】試題分析

先由F=30°BEC=60°解得EBF=30°=F,從而可得BE=FE=20米,再在RtBEC中由sinBEC=即可解得BC的值.

試題解析

∵∠BEC=∠F+∠EBF,∠F=30°,∠BEC=60°,

∴∠EBF=60°-30°=30°=∠F,

∴BE=FE=20(米).

RtBEC中,sinBEC=,

BC=BE×≈10×1.732=17.32≈17.3(米).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣2mx+4m﹣8,

1)當(dāng)x≤2時(shí),函數(shù)值yx的增大而減小,求m的取值范圍.

2)以拋物線y=x2﹣2mx+4m﹣8的頂點(diǎn)A為一個(gè)頂點(diǎn)作該拋物線的內(nèi)接正三角形AMNM,N兩點(diǎn)在拋物線上),請(qǐng)問:△AMN的面積是與m無關(guān)的定值嗎?若是,請(qǐng)求出這個(gè)定值;若不是,請(qǐng)說明理由.

3)若拋物線y=x2﹣2mx+4m﹣8x軸交點(diǎn)的橫坐標(biāo)均為整數(shù),求整數(shù)m的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在直角坐標(biāo)平面內(nèi),拋物線y=x2+bx+c經(jīng)過點(diǎn)A(2,0)、B(0,6).

(1)求拋物線的表達(dá)式;

(2)拋物線向下平移幾個(gè)單位后經(jīng)過點(diǎn)(4,0)?請(qǐng)通過計(jì)算說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上位于點(diǎn)A左側(cè)一點(diǎn),且AB=22,動(dòng)點(diǎn)PA點(diǎn)出發(fā),以每秒5個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為tt0)秒.

1)出數(shù)軸上點(diǎn)B表示的數(shù)  ;點(diǎn)P表示的數(shù)  (用含t的代數(shù)式表示)

2)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),若點(diǎn)P、Q同時(shí)出發(fā),問多少秒時(shí)P、Q之間的距離恰好等于2?

3)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)P、Q同時(shí)出發(fā),問點(diǎn)P運(yùn)動(dòng)多少秒時(shí)追上點(diǎn)Q?

4)若MAP的中點(diǎn),NBP的中點(diǎn),在點(diǎn)P運(yùn)動(dòng)的過程中,線段MN的長(zhǎng)度是否發(fā)生變化?若變化,請(qǐng)說明理由,若不變,請(qǐng)你畫出圖形,并求出線段MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用一張高為30,寬為的長(zhǎng)方形打印紙打印文檔,如果左右的頁邊距都為,上下頁邊距比左右頁邊距多.

1)請(qǐng)用的代數(shù)式表示中間打印部分的面積.

2)當(dāng)時(shí),中間打印部分的面積是多少平方厘米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AHCG,且分別交對(duì)角線BDH、G,連接CHAG,求證:∠CHG=AGH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料,請(qǐng)回答下列問題.

材料一:我國(guó)古代數(shù)學(xué)家秦九韶在《數(shù)書九章》中記述了“三斜求積術(shù)”,即已知三角形的三邊長(zhǎng),求它的面積,用現(xiàn)代式子表示即為:①(其中為三角形的三邊長(zhǎng),為面積),而另一個(gè)文明古國(guó)古希臘也有求三角形面積的“海倫公式”;……②(其中

材料二:對(duì)于平方差公式:公式逆用可得:,例:

1)若已知三角形的三邊長(zhǎng)分別為4,5,7,請(qǐng)分別運(yùn)用公式①和公式②,計(jì)算該三角形的面積;

2)你能否由公式①推導(dǎo)出公式②?請(qǐng)?jiān)囋,寫出推?dǎo)過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二元一次方程組的解 xy 的值是一個(gè)等腰三角形兩邊的長(zhǎng),且這個(gè)等腰三角形的周長(zhǎng)為 5,求腰的長(zhǎng).(注:等腰三角形中相等的兩條邊叫做等腰三角形的腰)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:

在一個(gè)三角形中,如果一個(gè)角的度數(shù)是另一個(gè)角的度數(shù)倍,那么這樣的三角形我們稱之為和諧三角形”.如:三個(gè)內(nèi)角分別為,,的三角形是和諧三角形

概念理解:

如圖,,在射線上找一點(diǎn),過點(diǎn)于點(diǎn),以為端點(diǎn)作射線,交線段于點(diǎn)(點(diǎn)不與重合)

1的度數(shù)為 , (填不是和諧三角形

2)若,求證:和諧三角形”.

應(yīng)用拓展:

如圖,點(diǎn)的邊上,連接,作的平分線交于點(diǎn),在上取點(diǎn),使,.和諧三角形,求的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案