【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上位于點(diǎn)A左側(cè)一點(diǎn),且AB=22,動(dòng)點(diǎn)PA點(diǎn)出發(fā),以每秒5個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為tt0)秒.

1)出數(shù)軸上點(diǎn)B表示的數(shù)  ;點(diǎn)P表示的數(shù)  (用含t的代數(shù)式表示)

2)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),若點(diǎn)P、Q同時(shí)出發(fā),問多少秒時(shí)P、Q之間的距離恰好等于2

3)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)PQ同時(shí)出發(fā),問點(diǎn)P運(yùn)動(dòng)多少秒時(shí)追上點(diǎn)Q

4)若MAP的中點(diǎn),NBP的中點(diǎn),在點(diǎn)P運(yùn)動(dòng)的過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由,若不變,請你畫出圖形,并求出線段MN的長.

【答案】1)﹣1485t;(22.53秒時(shí)P、Q之間的距離恰好等于2;(3)點(diǎn)P運(yùn)動(dòng)11秒時(shí)追上點(diǎn)Q;(4)線段MN的長度不發(fā)生變化,其值為11,見解析.

【解析】

1)根據(jù)已知可得B點(diǎn)表示的數(shù)為822;點(diǎn)P表示的數(shù)為85t;(2)設(shè)t秒時(shí)P、Q之間的距離恰好等于2.分①點(diǎn)PQ相遇之前和②點(diǎn)P、Q相遇之后兩種情況求t值即可;(3)設(shè)點(diǎn)P運(yùn)動(dòng)x秒時(shí),在點(diǎn)C處追上點(diǎn)Q,則AC=5x,BC=3x,根據(jù)ACBC=AB,列出方程求解即可;(3)分①當(dāng)點(diǎn)P在點(diǎn)A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),②當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)B的左側(cè)時(shí),利用中點(diǎn)的定義和線段的和差求出MN的長即可.

1)∵點(diǎn)A表示的數(shù)為8,BA點(diǎn)左邊,AB=22,

∴點(diǎn)B表示的數(shù)是822=﹣14

∵動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒5個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為tt0)秒,

∴點(diǎn)P表示的數(shù)是85t

故答案為:﹣14,85t;

2)若點(diǎn)P、Q同時(shí)出發(fā),設(shè)t秒時(shí)P、Q之間的距離恰好等于2.分兩種情況:

①點(diǎn)PQ相遇之前,

由題意得3t+2+5t=22,解得t=2.5;

②點(diǎn)P、Q相遇之后,

由題意得3t2+5t=22,解得t=3

答:若點(diǎn)P、Q同時(shí)出發(fā),2.53秒時(shí)P、Q之間的距離恰好等于2;

3)設(shè)點(diǎn)P運(yùn)動(dòng)x秒時(shí),在點(diǎn)C處追上點(diǎn)Q

AC=5x,BC=3x

ACBC=AB,

5x3x=22,

解得:x=11,

∴點(diǎn)P運(yùn)動(dòng)11秒時(shí)追上點(diǎn)Q

4)線段MN的長度不發(fā)生變化,都等于11;理由如下:

①當(dāng)點(diǎn)P在點(diǎn)A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí):

MN=MP+NP=AP+BP=AP+BP)=AB=×22=11;

②當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)B的左側(cè)時(shí):

MN=MPNP=APBP=APBP)=AB=11,

∴線段MN的長度不發(fā)生變化,其值為11

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩條平行直線上各有個(gè)點(diǎn),用這對點(diǎn)按如下的規(guī)則連接線段:①平行線之間的點(diǎn)在連線段時(shí),可以有共同的端點(diǎn),但不能有其它交點(diǎn);②符合①要求的線段必須全部畫出;圖1展示了當(dāng)時(shí)的情況,此時(shí)圖中三角形的個(gè)數(shù)為0;圖2展示了當(dāng)時(shí)的一種情況,此時(shí)圖中三角形的個(gè)數(shù)為2;圖3展示了當(dāng)時(shí)的一種情況,此時(shí)圖中三角形的個(gè)數(shù)為4;試猜想當(dāng)時(shí),按照上述規(guī)則畫出的圖形中,三角形最少有____個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)C為線段AB上任意一點(diǎn)(不與點(diǎn)A、B重合),分別以ACBC為一腰在AB的同側(cè)作等腰△ACD和△BCE,CACDCBCE,∠ACD=∠BCE30°,連接AECD于點(diǎn)M,連接BDCE于點(diǎn)N,AEBD交于點(diǎn)P,連接CP

1)線段AEDB的數(shù)量關(guān)系為  ;請直接寫出∠APD  ;

2)將△BCE繞點(diǎn)C旋轉(zhuǎn)到如圖2所示的位置,其他條件不變,探究線段AEDB的數(shù)量關(guān)系,并說明理由;求出此時(shí)∠APD的度數(shù);

3)在(2)的條件下求證:∠APC=∠BPC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某自行車廠計(jì)劃一周生產(chǎn)自行車1400輛,平均每天生產(chǎn)200輛,但由于種種原因,實(shí)際每天生產(chǎn)量與計(jì)劃量相比有出入.下表是某周的生產(chǎn)情況(超產(chǎn)記為正、減產(chǎn)記為負(fù)):

星期

增減

+5

-2

-4

+13

-10

+16

-9

1)根據(jù)記錄的數(shù)據(jù)可知該廠星期四生產(chǎn)自行車多少輛;

2)根據(jù)記錄的數(shù)據(jù)可知該廠本周實(shí)際生產(chǎn)自行車多少輛;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),菱形的對角線軸上,兩點(diǎn)分別在第一象限和第四象限.直線的解析式為

(1)如圖1,求點(diǎn)的坐標(biāo);

(2)如圖2,為射線上一動(dòng)點(diǎn)(不與點(diǎn)和點(diǎn)重合),過點(diǎn)軸交直線于點(diǎn).設(shè)線段的長度為,點(diǎn)的橫坐標(biāo)為,求的函數(shù)關(guān)系式,并直接寫出自變量的取值范圍;

(3)如圖3,在(2)的條件下,當(dāng)點(diǎn)運(yùn)動(dòng)到線段的延長線上時(shí),連接軸于點(diǎn),連接,,延長于點(diǎn),過軸于點(diǎn),的角平分線軸于點(diǎn),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A0,a),B0,b),Cm,b)且(a-42+ =0

1)求C點(diǎn)坐標(biāo)

2)作DE DC,交y軸于E點(diǎn),EF AED的平分線,且DFE= 90o。 求證:FD平分ADO;

3E y 軸負(fù)半軸上運(yùn)動(dòng)時(shí),連 EC,點(diǎn) P AC 延長線上一點(diǎn),EM 平分∠AEC,且 PMEM,PNx 軸于 N 點(diǎn),PQ 平分∠APN,交 x 軸于 Q 點(diǎn),則 E 在運(yùn)動(dòng)過程中,的大小是否發(fā)生變化,若不變,求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在某建筑物AC上,掛著一宣傳條幅BC,站在點(diǎn)F處,測得條幅頂端B的仰角為300,往條幅方向前行20米到達(dá)點(diǎn)E處,測得條幅頂端B的仰角為600,求宣傳條幅BC的長.,結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,禁止捕魚期間,某海上稽查隊(duì)在某海域巡邏,上午某一時(shí)刻在A處接到指揮部通知,在他們東北方向距離12海里的B處有一艘捕魚船,正在沿南偏東75°方向以每小時(shí)10海里的速度航行,稽查隊(duì)員立即乘坐巡邏船以每小時(shí)14海里的速度沿北偏東某一方向出發(fā),在C處成功攔截捕魚船,求巡邏船從出發(fā)到成功攔截捕魚船所用的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A、B的坐標(biāo)分別為(8,0)、(0,2),CAB的中點(diǎn),過點(diǎn)Cy軸的垂線,垂足為D,動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿DC向點(diǎn)C勻速運(yùn)動(dòng),過點(diǎn)Px軸的垂線,垂足為E,連接BPEC.當(dāng)BP所在直線與EC所在直線垂直時(shí),點(diǎn)P的坐標(biāo)為____

查看答案和解析>>

同步練習(xí)冊答案