探索性問題:

如圖,已知A,B在數(shù)軸上分別表示a、b。利用數(shù)形結(jié)合思想回答下列問題:

(1)填寫下表:

(2)任取上表一列數(shù),你發(fā)現(xiàn)距離表示列式為                    (用a、b表示),

    則軸上表示 的兩點(diǎn)之間的距離表示為             .

(3)若表示一個(gè)有理數(shù),且,則=          .

(4)若A,B兩點(diǎn)的距離為 d,則d與a、b有何數(shù)量關(guān)系。

 

【答案】

2, 5,10,2,12,0,b—a,,4,

【解析】(1)首先要明確兩點(diǎn)間的距離,即為兩數(shù)差的絕對(duì)值得出即可.

(2)可以取列A=|5-3|=2,進(jìn)而得出數(shù)軸上表示x和-2的兩點(diǎn)之間的距離;

(3)由-3<x<1得,實(shí)際是-3與1的距離,得出即可;

(4)明確兩點(diǎn)間的距離,即為兩數(shù)差的絕對(duì)值(|).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

在一節(jié)數(shù)學(xué)實(shí)踐活動(dòng)課上,呂老師手拿著三個(gè)正方形硬紙板和幾個(gè)不同的圓形的盤子,他向同學(xué)們提出了這樣一個(gè)問題:已知手中圓盤的直徑為13cm,手中的三個(gè)正方形硬紙板的邊長(zhǎng)均為5cm,若將三個(gè)正方形紙板不重疊地放在桌面上,能否用這個(gè)圓盤將其蓋?問題提出后,同學(xué)們七嘴八舌,經(jīng)過(guò)討論,大家得出了一致性的結(jié)論是:本題實(shí)際上是求在不同情況下將三個(gè)正方形硬紙板無(wú)重疊地適當(dāng)放置,圓盤能蓋住時(shí)的最小直徑.然后將各種情形下的直徑值與13cm進(jìn)行比較,若小于或等于13cm就能蓋住,反之,則不能蓋。畢卫蠋煱淹瑢W(xué)們探索性畫出的四類圖形畫在黑板上,如下圖所示.
精英家教網(wǎng)
(1)通過(guò)計(jì)算,在①中圓盤剛好能蓋住正方形紙板的最小直徑應(yīng)為
 
cm.(填準(zhǔn)確數(shù))
(2)圖②能蓋住三個(gè)正方形硬紙板所需的圓盤最小直徑為
 
cm圖③能蓋住三個(gè)正方形硬紙板所需的圓盤最小直徑為
 
cm?(結(jié)果填準(zhǔn)確數(shù))
(3)按④中的放置,考慮到圖形的軸對(duì)稱性,當(dāng)圓心O落在GH邊上時(shí),此時(shí)圓盤的直徑最。(qǐng)你寫出該種情況下求圓盤最小直徑的過(guò)程.(計(jì)算中可能用到的數(shù)據(jù),為了計(jì)算方便,本問在計(jì)算過(guò)程中,根據(jù)實(shí)際情況最后的結(jié)果可對(duì)個(gè)別數(shù)據(jù)取整數(shù))
(4)由(1)(2)(3)的計(jì)算可知:A.該圓盤能蓋住三個(gè)正方形硬紙板,B.該圓盤不能蓋住三個(gè)正方形硬紙板.你的結(jié)論是
 
.(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

探索性問題:
(1)如圖,先在數(shù)軸上畫出表示2.5的相反數(shù)的點(diǎn)B,再把點(diǎn)A向左移動(dòng)1.5個(gè)單位,得到點(diǎn)C,求點(diǎn)B,C表示的數(shù)分別為
-2.5、1
-2.5、1
,B,C兩點(diǎn)間的距離是
3.5
3.5

(2)數(shù)軸上表示x和-1的兩點(diǎn)A和B之間的距離表示為
|x+1|
|x+1|
,如果|AB|=3,那么x為
2或-4
2或-4
;
(3)若點(diǎn)A表示的整數(shù)為x,則當(dāng)x為
-1
-1
時(shí),|x+4|與|x-2|的值相等.
(4)要使代數(shù)式|x+5|+|x-2|取最小值時(shí),相應(yīng)的x的取值范圍是
-5≤x≤2
-5≤x≤2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇灌南實(shí)驗(yàn)中學(xué)七年級(jí)第一次階段性檢測(cè)數(shù)學(xué)試卷(帶解析) 題型:解答題

探索性問題:
如圖,已知A,B在數(shù)軸上分別表示a、b。利用數(shù)形結(jié)合思想回答下列問題:
(1)填寫下表:

(2)任取上表一列數(shù),你發(fā)現(xiàn)距離表示列式為                   (用a、b表示),
則軸上表示 的兩點(diǎn)之間的距離表示為            .
(3)若表示一個(gè)有理數(shù),且,則=         .
(4)若A,B兩點(diǎn)的距離為 d,則d與a、b有何數(shù)量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在一節(jié)數(shù)學(xué)實(shí)踐活動(dòng)課上,呂老師手拿著三個(gè)正方形硬紙板和幾個(gè)不同的圓形的盤子,他向同學(xué)們提出了這樣一個(gè)問題:已知手中圓盤的直徑為13cm,手中的三個(gè)正方形硬紙板的邊長(zhǎng)均為5cm,若將三個(gè)正方形紙板不重疊地放在桌面上,能否用這個(gè)圓盤將其蓋。繂栴}提出后,同學(xué)們七嘴八舌,經(jīng)過(guò)討論,大家得出了一致性的結(jié)論是:本題實(shí)際上是求在不同情況下將三個(gè)正方形硬紙板無(wú)重疊地適當(dāng)放置,圓盤能蓋住時(shí)的最小直徑.然后將各種情形下的直徑值與13cm進(jìn)行比較,若小于或等于13cm就能蓋住,反之,則不能蓋。畢卫蠋煱淹瑢W(xué)們探索性畫出的四類圖形畫在黑板上,如下圖所示.

精英家教網(wǎng)

(1)通過(guò)計(jì)算,在①中圓盤剛好能蓋住正方形紙板的最小直徑應(yīng)為______cm.(填準(zhǔn)確數(shù))
(2)圖②能蓋住三個(gè)正方形硬紙板所需的圓盤最小直徑為______cm圖③能蓋住三個(gè)正方形硬紙板所需的圓盤最小直徑為______cm?(結(jié)果填準(zhǔn)確數(shù))
(3)按④中的放置,考慮到圖形的軸對(duì)稱性,當(dāng)圓心O落在GH邊上時(shí),此時(shí)圓盤的直徑最。(qǐng)你寫出該種情況下求圓盤最小直徑的過(guò)程.(計(jì)算中可能用到的數(shù)據(jù),為了計(jì)算方便,本問在計(jì)算過(guò)程中,根據(jù)實(shí)際情況最后的結(jié)果可對(duì)個(gè)別數(shù)據(jù)取整數(shù))
(4)由(1)(2)(3)的計(jì)算可知:A.該圓盤能蓋住三個(gè)正方形硬紙板,B.該圓盤不能蓋住三個(gè)正方形硬紙板.你的結(jié)論是______.(填序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案