在一節(jié)數(shù)學(xué)實(shí)踐活動(dòng)課上,呂老師手拿著三個(gè)正方形硬紙板和幾個(gè)不同的圓形的盤(pán)子,他向同學(xué)們提出了這樣一個(gè)問(wèn)題:已知手中圓盤(pán)的直徑為13cm,手中的三個(gè)正方形硬紙板的邊長(zhǎng)均為5cm,若將三個(gè)正方形紙板不重疊地放在桌面上,能否用這個(gè)圓盤(pán)將其蓋。繂(wèn)題提出后,同學(xué)們七嘴八舌,經(jīng)過(guò)討論,大家得出了一致性的結(jié)論是:本題實(shí)際上是求在不同情況下將三個(gè)正方形硬紙板無(wú)重疊地適當(dāng)放置,圓盤(pán)能蓋住時(shí)的最小直徑.然后將各種情形下的直徑值與13cm進(jìn)行比較,若小于或等于13cm就能蓋住,反之,則不能蓋。畢卫蠋煱淹瑢W(xué)們探索性畫(huà)出的四類(lèi)圖形畫(huà)在黑板上,如下圖所示.
(1)通過(guò)計(jì)算,在①中圓盤(pán)剛好能蓋住正方形紙板的最小直徑應(yīng)為
cm.(填準(zhǔn)確數(shù))
(2)圖②能蓋住三個(gè)正方形硬紙板所需的圓盤(pán)最小直徑為
cm圖③能蓋住三個(gè)正方形硬紙板所需的圓盤(pán)最小直徑為
cm?(結(jié)果填準(zhǔn)確數(shù))
(3)按④中的放置,考慮到圖形的軸對(duì)稱(chēng)性,當(dāng)圓心O落在GH邊上時(shí),此時(shí)圓盤(pán)的直徑最小.請(qǐng)你寫(xiě)出該種情況下求圓盤(pán)最小直徑的過(guò)程.(計(jì)算中可能用到的數(shù)據(jù),為了計(jì)算方便,本問(wèn)在計(jì)算過(guò)程中,根據(jù)實(shí)際情況最后的結(jié)果可對(duì)個(gè)別數(shù)據(jù)取整數(shù))
(4)由(1)(2)(3)的計(jì)算可知:A.該圓盤(pán)能蓋住三個(gè)正方形硬紙板,B.該圓盤(pán)不能蓋住三個(gè)正方形硬紙板.你的結(jié)論是
.(填序號(hào))