如圖,二次函數的圖象與x軸交于點A(﹣3,0)和點B,以AB為邊在x軸上方作正方形ABCD,點P是x軸上一動點,連接DP,過點P作DP的垂線與y軸交于點E.
(1)請直接寫出點D的坐標: ;
(2)當點P在線段AO(點P不與A、O重合)上運動至何處時,線段OE的長有最大值,求出這個最大值;
(3)是否存在這樣的點P,使△PED是等腰三角形?若存在,請求出點P的坐標及此時△PED與正方形ABCD重疊部分的面積;若不存在,請說明理由.
科目:初中數學 來源: 題型:解答題
某工廠生產某品牌的護眼燈,并將護眼燈按質量分成15個等級(等級越高,質量越好.如:二級產品好于一級產品).若出售這批護眼燈,一級產品每臺可獲利21元,每提高一個等級每臺可多獲利潤1元,工廠每天只能生產同一個等級的護眼燈,每個等級每天生產的臺數如下表表示:
等級(x級) | 一級 | 二級 | 三級 | … |
生產量(y臺/天) | 78 | 76 | 74 | … |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,在△ABC中,∠C=90°,BC=3,AB=5.點P從點B出發(fā),以每秒1個單位長度沿B→C→A→B的方向運動;點Q從點C出發(fā),以每秒2個單位沿C→A→B方向的運動,到達點B后立即原速返回,若P、Q兩點同時運動,相遇后同時停止,設運動時間為t秒.
(1)當t= 時,點P與點Q相遇;
(2)在點P從點B到點C的運動過程中,當ι為何值時,△PCQ為等腰三角形?
(3)在點Q從點B返回點A的運動過程中,設△PCQ的面積為s平方單位.
①求s與ι之間的函數關系式;
②當s最大時,過點P作直線交AB于點D,將△ABC中沿直線PD折疊,使點A落在直線PC上,求折疊后的
△APD與△PCQ重疊部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
已知拋物線拋物線(n為正整數,且0<a1<a2<…<an)與x軸的交點為An-1(bn-1,0)和An(bn,0),當n=1時,第1條拋物線與x軸的交點為A0(0,0)和A1(b1,0),其他依此類推.
(1)求a1,b1的值及拋物線y2的解析式;
(2)拋物線y3的頂點坐標為( , );
依此類推第n條拋物線yn的頂點坐標為( , );
所有拋物線的頂點坐標滿足的函數關系是 ;
(3)探究下列結論:
①若用An-1An表示第n條拋物線被x軸截得得線段長,直接寫出A0A1的值,并求出An-1An;
②是否存在經過點A(2,0)的直線和所有拋物線都相交,且被每一條拋物線截得得線段的長度都相等?若存在,直接寫出直線的表達式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,拋物線與x軸相交于點A、B,與y軸相交于點C,拋物線的對稱軸與x軸相交于點M.P是拋物線在x軸上方的一個動點(點P、M、C不在同一條直線上).分別過點A、B作直線CP的垂線,垂足分別為D、E,連接點MD、ME.
(1)求點A,B的坐標(直接寫出結果),并證明△MDE是等腰三角形;
(2)△MDE能否為等腰直角三角形?若能,求此時點P的坐標;若不能,說明理由;
(3)若將“P是拋物線在x軸上方的一個動點(點P、M、C不在同一條直線上)”改為“P是拋物線在x軸下方的一個動點”,其他條件不變,△MDE能否為等腰直角三角形?若能,求此時點P的坐標(直接寫出結果);若不能,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,在平面直角坐標系xOy中,拋物線的頂點為A,與y軸的交點為B,連結AB,AC⊥AB,交y軸于點C,延長CA到點D,使AD=AC,連結BD.作AE∥x軸,DE∥y軸.
(1)當m=2時,求點B的坐標;
(2)求DE的長?
(3)①設點D的坐標為(x,y),求y關于x的函數關系式?②過點D作AB的平行線,與第(3)①題確定的函數圖象的另一個交點為P,當m為何值時,以,A,B,D,P為頂點的四邊形是平行四邊形?
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,已知拋物線y=ax2+bx﹣4經過A(﹣8,0),B(2,0)兩點,直線x=﹣4交x軸于點C,交拋物線于點D.
(1)求該拋物線的解析式;
(2)點P在拋物線上,點E在直線x=﹣4上,若以A,O,E,P為頂點的四邊形是平行四邊形,求點P的坐標;
(3)若B,D,C三點到同一條直線的距離分別是d1,d2,d3,問是否存在直線l,使?若存在,請直接寫出d3的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標為(4,),且與y軸交于點C(0,2),與x軸交于A,B兩點(點A在點B的左邊).
(1)求拋物線的解析式及A,B兩點的坐標;
(2)在(1)中拋物線的對稱軸l上是否存在一點P,使AP+CP的值最。咳舸嬖,求AP+CP的最小值,若不存在,請說明理由;
(3)在以AB為直徑的⊙M相切于點E,CE交x軸于點D,求直線CE的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,拋物線y=x2+bx+c過點A(﹣4,﹣3),與y軸交于點B,對稱軸是x=﹣3,請解答下列問題:
(1)求拋物線的解析式.
(2)若和x軸平行的直線與拋物線交于C,D兩點,點C在對稱軸左側,且CD=8,求△BCD的面積.
注:拋物線y=ax2+bx+c(a≠0)的對稱軸是.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com