如圖,拋物線與x軸相交于點(diǎn)A、B,與y軸相交于點(diǎn)C,拋物線的對(duì)稱軸與x軸相交于點(diǎn)M.P是拋物線在x軸上方的一個(gè)動(dòng)點(diǎn)(點(diǎn)P、M、C不在同一條直線上).分別過(guò)點(diǎn)A、B作直線CP的垂線,垂足分別為D、E,連接點(diǎn)MD、ME.

(1)求點(diǎn)A,B的坐標(biāo)(直接寫(xiě)出結(jié)果),并證明△MDE是等腰三角形;
(2)△MDE能否為等腰直角三角形?若能,求此時(shí)點(diǎn)P的坐標(biāo);若不能,說(shuō)明理由;
(3)若將“P是拋物線在x軸上方的一個(gè)動(dòng)點(diǎn)(點(diǎn)P、M、C不在同一條直線上)”改為“P是拋物線在x軸下方的一個(gè)動(dòng)點(diǎn)”,其他條件不變,△MDE能否為等腰直角三角形?若能,求此時(shí)點(diǎn)P的坐標(biāo)(直接寫(xiě)出結(jié)果);若不能,說(shuō)明理由.

(1)A(1,0),B(5,0),證明見(jiàn)解析
(2)△MDE能成為等腰直角三角形,此時(shí)點(diǎn)P坐標(biāo)為(,3)
(3)能。此時(shí)點(diǎn)P坐標(biāo)為(,)。

解析試題分析:(1)在拋物線解析式中,令y=0,解一元二次方程,可求得點(diǎn)A、點(diǎn)B的坐標(biāo)。如答圖1所示,作輔助線,構(gòu)造全等三角形△AMF≌△BME,得到點(diǎn)M為為Rt△EDF斜邊EF的中點(diǎn),從而得到MD=ME,問(wèn)題得證。
中,令y=0,即﹣,解得x=1或x=5,
∴A(1,0),B(5,0)。
如答圖1所示,分別延長(zhǎng)AD與EM,交于點(diǎn)F,

∵AD⊥PC,BE⊥PC,∴AD∥BE!唷螹AF=∠MBE。
在△AMF與△BME中,
∵∠MAF=∠MBE,MA=MB,∠AMF=∠BME,
∴△AMF≌△BME(ASA)。
∴ME=MF,即點(diǎn)M為Rt△EDF斜邊EF的中點(diǎn)。
∴MD=ME,即△MDE是等腰三角形。
(2)首先分析,若△MDE為等腰直角三角形,直角頂點(diǎn)只能是點(diǎn)M。如答圖2所示,設(shè)直線PC與對(duì)稱軸交于點(diǎn)N,證明△ADM≌△NEM,得到MN=AM,從而求得點(diǎn)N坐標(biāo)為(3,2);利用點(diǎn)N、點(diǎn)C坐標(biāo),求出直線PC的解析式;最后聯(lián)立直線PC與拋物線的解析式,求出點(diǎn)P的坐標(biāo)。
能。
,∴拋物線的對(duì)稱軸是直線x=3,M(3,0)
令x=0,得y=﹣4,∴C(0,﹣4)。
△MDE為等腰直角三角形,有3種可能的情形:
①若DE⊥EM,
由DE⊥BE,可知點(diǎn)E、M、B在一條直線上,而點(diǎn)B、M在x軸上,因此點(diǎn)E必然在x軸上。
由DE⊥BE,可知點(diǎn)E只能與點(diǎn)O重合,即直線PC與y軸重合,不符合題意。
故此種情況不存在。
②若DE⊥DM,與①同理可知,此種情況不存在。
③若EM⊥DM,如答圖2所示,

設(shè)直線PC與對(duì)稱軸交于點(diǎn)N,
∵EM⊥DM,MN⊥AM,∴∠EMN=∠DMA。
在△ADM與△NEM中,
∵∠DMA =∠EMN,DM = EM,∠ADM=∠NEM=135°,
∴△ADM≌△NEM(ASA)!郙N=MA。
∵M(jìn)(3,0),MN=MA=2,∴N(3,2)。
設(shè)直線PC解析式為y=kx+b,
∵點(diǎn)N(3,2),C(0,﹣4)在拋物線上,
,解得
∴直線PC解析式為y=2x﹣4。
將y=2x﹣4代入拋物線解析式得: ,解得:x=0或x=
當(dāng)x=0時(shí),交點(diǎn)為點(diǎn)C;當(dāng)x=時(shí),y=2x﹣4=3。
∴P(,3)。
綜上所述,△MDE能成為等腰直角三角形,此時(shí)點(diǎn)P坐標(biāo)為(,3)。
(3)當(dāng)點(diǎn)P是拋物線在x軸下方的一個(gè)動(dòng)點(diǎn)時(shí),解題思路與(2)完全相同:
如答題3所示,設(shè)對(duì)稱軸與直線PC交于點(diǎn)N,

與(2)同理,可知若△MDE為等腰直角三角形,直角頂點(diǎn)只能是點(diǎn)M。
∵M(jìn)D⊥ME,MA⊥MN,∴∠DMN=∠EMB。
在△DMN與△EMB中,
∵∠SMN =∠EMB,DM = EM,∠MDN=∠MEB=45°,
∴△DMN≌△EMB(ASA)。∴MN=MB!郚(3,﹣2)。
設(shè)直線PC解析式為y=kx+b,
∵點(diǎn)N(3,﹣2),C(0,﹣4)在拋物線上,
,解得。
∴直線PC解析式為y=x﹣4。
將y=x﹣4代入拋物線解析式得:,解得:x=0或x=。
當(dāng)x=0時(shí),交點(diǎn)為點(diǎn)C;當(dāng)x=時(shí),y=x﹣4=!郟()。
綜上所述,△MDE能成為等腰直角三角形,此時(shí)點(diǎn)P坐標(biāo)為(,)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)的圖像經(jīng)過(guò)點(diǎn)(0,-4),且當(dāng)x=2,有最大值—2。求該二次函數(shù)的關(guān)系式:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖①,已知拋物線經(jīng)過(guò)點(diǎn)A(0,3),B(3,0),C(4,3).

(1)求拋物線的函數(shù)表達(dá)式;
(2)求拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸;
(3)把拋物線向上平移,使得頂點(diǎn)落在x軸上,直接寫(xiě)出兩條拋物線、對(duì)稱軸和y軸圍成的圖形的面積S(圖②中陰影部分).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,拋物線經(jīng)過(guò)A(﹣1,0),B(5,0),C(0,)三點(diǎn).

(1)求拋物線的解析式;
(2)在拋物線的對(duì)稱軸上有一點(diǎn)P,使PA+PC的值最小,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M為x軸上一動(dòng)點(diǎn),在拋物線上是否存在一點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某公司銷售一種進(jìn)價(jià)為20元/個(gè)的計(jì)算機(jī),其銷售量y(萬(wàn)個(gè))與銷售價(jià)格x(元/個(gè))的變化如下表:

價(jià)格x(元/個(gè))

30
40
50
60

銷售量y(萬(wàn)個(gè))

5
4
3
2

同時(shí),銷售過(guò)程中的其他開(kāi)支(不含造價(jià))總計(jì)40萬(wàn)元.
(1)觀察并分析表中的y與x之間的對(duì)應(yīng)關(guān)系,用所學(xué)過(guò)的一次函數(shù),反比例函數(shù)或二次函數(shù)的有關(guān)知識(shí)寫(xiě)出y(萬(wàn)個(gè))與x(元/個(gè))的函數(shù)解析式.
(2)求出該公司銷售這種計(jì)算器的凈得利潤(rùn)z(萬(wàn)個(gè))與銷售價(jià)格x(元/個(gè))的函數(shù)解析式,銷售價(jià)格定為多少元時(shí)凈得利潤(rùn)最大,最大值是多少?
(3)該公司要求凈得利潤(rùn)不能低于40萬(wàn)元,請(qǐng)寫(xiě)出銷售價(jià)格x(元/個(gè))的取值范圍,若還需考慮銷售量盡可能大,銷售價(jià)格應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,二次函數(shù)的圖象與x軸交于點(diǎn)A(﹣3,0)和點(diǎn)B,以AB為邊在x軸上方作正方形ABCD,點(diǎn)P是x軸上一動(dòng)點(diǎn),連接DP,過(guò)點(diǎn)P作DP的垂線與y軸交于點(diǎn)E.

(1)請(qǐng)直接寫(xiě)出點(diǎn)D的坐標(biāo):     ;
(2)當(dāng)點(diǎn)P在線段AO(點(diǎn)P不與A、O重合)上運(yùn)動(dòng)至何處時(shí),線段OE的長(zhǎng)有最大值,求出這個(gè)最大值;
(3)是否存在這樣的點(diǎn)P,使△PED是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo)及此時(shí)△PED與正方形ABCD重疊部分的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

閱讀材料:如圖1,在平面直角坐標(biāo)系中,A、B兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),AB中點(diǎn)P的坐標(biāo)為(xp,yp).由xp﹣x1=x2﹣xp,得,同理,所以AB的中點(diǎn)坐標(biāo)為.由勾股定理得,所以A、B兩點(diǎn)間的距離公式為
注:上述公式對(duì)A、B在平面直角坐標(biāo)系中其它位置也成立.
解答下列問(wèn)題:

如圖2,直線l:y=2x+2與拋物線y=2x2交于A、B兩點(diǎn),P為AB的中點(diǎn),過(guò)P作x軸的垂線交拋物線于點(diǎn)C.
(1)求A、B兩點(diǎn)的坐標(biāo)及C點(diǎn)的坐標(biāo);
(2)連結(jié)AB、AC,求證△ABC為直角三角形;
(3)將直線l平移到C點(diǎn)時(shí)得到直線l′,求兩直線l與l′的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,已知拋物線y=﹣2x2﹣4x的圖象E,將其向右平移兩個(gè)單位后得到圖象F.

(1)求圖象F所表示的拋物線的解析式:
(2)設(shè)拋物線F和x軸相交于點(diǎn)O、點(diǎn)B(點(diǎn)B位于點(diǎn)O的右側(cè)),頂點(diǎn)為點(diǎn)C,點(diǎn)A位于y軸負(fù)半軸上,且到x軸的距離等于點(diǎn)C到x軸的距離的2倍,求AB所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(﹣6,0),B(4,0),C(0,8),把△ABC沿直線BC翻折,點(diǎn)A的對(duì)應(yīng)點(diǎn)為D,拋物線y=ax2﹣10ax+c經(jīng)過(guò)點(diǎn)C,頂點(diǎn)M在直線BC上.

(1)證明四邊形ABCD是菱形,并求點(diǎn)D的坐標(biāo);
(2)求拋物線的對(duì)稱軸和函數(shù)表達(dá)式;
(3)在拋物線上是否存在點(diǎn)P,使得△PBD與△PCD的面積相等?若存在,直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案