已知等邊△ABC,邊長為4,點D從點A出發(fā),沿AB運動到點B,到點B停止運動.點E從A出發(fā),沿AC的方向在直線AC上運動.點D的速度為每秒1個單位,點E的速度為每秒2個單位,它們同時出發(fā),同時停止.以點E為圓心,DE長為半徑作圓.設E點的運動時間為t秒.

(l)如圖l,判斷⊙E與AB的位置關系,并證明你的結論;
(2)如圖2,當⊙E與BC切于點F時,求t的值;
(3)以點C為圓心,CE長為半徑作⊙C,OC與射線AC交于點G.當⊙C與⊙E相切時,直接寫出t的值為____
(1)AB與⊙E相切;(2)1;(3),

試題分析:(1)過點D作DM⊥AC于點M,先根據(jù)等邊三角形的性質得到∠A=60°,在Rt△ADM中即可表示出AM、DM的長,由AE=2t可得ME=t,在Rt△DME中,DE=AM+EM=3t,在Rt△ADE中,可得AD+DE=AE,即可得到∠ADE=90°,從而證得結論;
(2)連BE、EF,根據(jù)切線的性質可得BE平分∠ABC,由AB=BC可得AE=CE,即可求得結果;
(3)當⊙C與⊙E相切時,DE=EG=2EC,分點E在線段AC上與點E在AC的延長線上兩種情況分析即可.
(1)過點D作DM⊥AC于點M

∵△ABC為等邊三角形
∴∠A=60°  
在Rt△ADM中,AD=t,∠A=60°
∴AM=t,DM=t
∵AE=2t
∴ME=t
在Rt△DME中,DE=AM+EM=3t
在Rt△ADE中,AD=t,AE=4t,DE=3t
∴AD+DE=AE 
∴∠ADE=90°
∴AD與⊙D相切;
(2)連BE、EF,

∵BD、BE與⊙O相切
∴BE平分∠ABC
∵AB=BC
∴AE=CE 
∵AC=4 
∴AE=2,t=1;
(3)當⊙C與⊙E相切時,DE=EG=2EC
∵DE=t,
∴EC=t,
有兩種情形:
第一,當E在線段AC上時,AC=AE+EC,2t+t=4,t=
第二、當點E在AC的延長線上時,AC=AE-EC,2t-t=4,t=.
點評:解答本題的關鍵是熟練掌握切線垂直于經(jīng)過切點的半徑;兩圓內(nèi)切時,圓心距等于兩圓半徑之差,兩圓外切時,圓心距等于兩圓半徑之和.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,是⊙O的直徑,弦BC=8,∠BOC=60°, OEAC,垂足為E

(1)求OE的長;
(2)求劣弧AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題14分)某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下圖是水平放置的破裂管道有水部分的截面.

(1)請你補全這個輸水管道的圓形截面;
(2)若這個輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,求這個圓形截面的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AB切⊙O于點B,延長AO交⊙O于點C,連接BC.若∠A=40°,則∠C=( 。

A. 20°         B. 25°          C. 40°           D. 50°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,⊙的半徑為4,是直徑同側圓周上的兩點,弧的度數(shù)為,弧的度數(shù)為,動點上,則的最小值為          。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某種在同一平面進行傳動的機械裝置如圖1,圖2是它的示意圖.其工作原理是:滑塊Q在平直滑道l上可以左右滑動,在Q滑動的過程中,連桿PQ也隨之運動,并且PQ帶動連桿OP繞固定點O擺動.在擺動過程中,兩連桿的接點P在以OP為半徑的⊙O上運動.數(shù)學興趣小組為進一步研究其中所蘊含的數(shù)學知識,過點O作OH ⊥l于點H,并測得OH = 4 dm,PQ = 3 dm,OP = 2 dm.解決問題

(1)點Q與點O間的最小距離是      dm;點Q與點O間的最大距離是      dm;點Q在l上滑到最左端的位置與滑到最右端位置間的距離是      分米.
(2)如圖3,小明同學說:“當點Q滑動到點H的位置時,PQ與⊙O是相切的.”你認為他的判斷對嗎?為什么?

(3)①小麗同學發(fā)現(xiàn):“當點P運動到OH上時,點P到l的距離最。笔聦嵣,還存在著點P到l距離最大的位置,此時,點P到l的距離是      dm;
②當OP繞點O左右擺動時,所掃過的區(qū)域為扇形,求這個扇形面積最大時圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,每個小方格都是邊長為1個單位的小正方形,B,C,D三點都是格點(每個小方格的頂點叫格點).

(1)找出格點A,連接AB、AD,使得四邊形ABCD為菱形;
(2)畫出菱形ABCD繞點A逆時針旋轉90°后的菱形AB1C1D1,并求點C旋轉到點C1所經(jīng)過的路線長.(結果保留

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(6分)如圖,已知AB是⊙O的直徑,點C,D在⊙O上.

(1)若∠CAB=30°,求∠ADC的度數(shù);
(2)若弦AC=cm,陰影部分弓高為6,求弓形的面積;

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

圓O的半徑為6cm,P是圓O內(nèi)一點,OP=2cm,那么過點P的最短弦的長等于   

查看答案和解析>>

同步練習冊答案