【題目】如圖(1),分別以直角△ABC的三邊為直徑向外作三個半圓,其面積分別用S1、S2、S3表示,則不難說明S1=S2+S3。(1)如圖(2),分別以直角△ABC三邊為一邊向外作三個正方形,其面積分別用S1、S2、S3表示,那么S1、S2、S3之間有什么關(guān)系?(2)如圖(3),若分別以直角△ABC三邊為一邊向外作三個正三角形,其面積分別用S1、S2、S3表示,試確定S1、S2、S3之間的關(guān)系并加以說明.

【答案】(1)S1=S2+S3 (2)S1=S2+S3,說明見解析.

【解析】

利用直角△ABC的邊長就可以表示出S1、S2、S3的大小.三角形的邊滿足勾股定理.

(1)根據(jù)勾股定理可得:S1=S2+S3;
(2)S1=S2+S3.證明如下:
顯然,S1=,S2=,S3=
∴S2+S3==S1,
即S1=S2+S3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )
A.為了了解全國中學(xué)生每天體育鍛煉的時間,應(yīng)采用普查的方式
B.若甲組數(shù)據(jù)的方差s =0.03,乙組數(shù)據(jù)的方差是s =0.2,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定
C.廣安市明天一定會下雨
D.一組數(shù)據(jù)4、5、6、5、2、8的眾數(shù)是5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于H,G為⊙O上一點,AG交CD于K,E為CD延長線上一點,且EK=EG,EG的延長線交AB的延長線于F.
(1)求證:EF為⊙O的切線;
(2)若DK=2HK=AK,CH= ,求圖中陰影部分的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,,點,分別在上,射線點順時針旋轉(zhuǎn)至便立即逆時針回轉(zhuǎn),射線點順時針旋轉(zhuǎn)至便立即逆時針回轉(zhuǎn).射線轉(zhuǎn)動的速度是每秒度,射線轉(zhuǎn)動的速度是每秒度.

1)直接寫出的大小為_______

2)射線、轉(zhuǎn)動后對應(yīng)的射線分別為,射線交直線于點,若射線比射線先轉(zhuǎn)動秒,設(shè)射線轉(zhuǎn)動的時間為秒,求為多少時,直線直線

3)如圖2,若射線、同時轉(zhuǎn)動秒,轉(zhuǎn)動的兩條射線交于點,作,點上,請?zhí)骄?/span>的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在5×5的方格紙中,每一個小正方形的邊長都為1.

(1)BCD是不是直角?請說明理由;

(2)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

在學(xué)習(xí)“分式方程及其解法”過程中,老師提出一個問題:若關(guān)于x的分式方程的解為正數(shù),求a的取值范圍?

經(jīng)過獨立思考與分析后,小明和小聰開始交流解題思路如下:

小明說:解這個關(guān)于x的分式方程,得到方程的解為.由題意可得,所以,問題解決.

小聰說:你考慮的不全面.還必須保證才行.

請回答:_______________的說法是正確的,并說明正確的理由是:__________________.

完成下列問題:

(1)已知關(guān)于x的方程的解為非負數(shù),求m的取值范圍;

(2)若關(guān)于x的分式方程無解.直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一副撲克牌中取牌面花色分別為黑桃、紅心、方塊各一張,洗勻后正面朝下放在桌面上.
(1)從這三張牌中隨機抽取一張牌,抽到牌面花色為紅心的概率是多少?
(2)小王和小李玩摸牌游戲,游戲規(guī)則如下:先由小王隨機抽出一張牌,記下牌面花色后放回,洗勻后正面朝下,再由小李隨機抽出一張牌,記下牌面花色.當(dāng)兩張牌的花色相同時,小王贏;當(dāng)兩張牌面的花色不相同時,小李贏.請你利用樹狀圖或列表法分析該游戲規(guī)則對雙方是否公平?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知△ABC,AB=AC=12cm,∠B=∠C,BC=8cm,DAB的中點

(1)如果點P在線段BC上以2cm/s的速度由點B向點C運動,同時,Q在線段CA上由點C向點A運動

①若點Q的運動速度與點P的運動速度相等經(jīng)過1秒后,△BPD與△CQP是否全等請說明理由;

②若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使△BPD與△CQP全等?

(2)若點Q以②中的運動速度從點C出發(fā),P以原來的運動速度從點B同時出發(fā)都逆時針沿△ABC三邊運動,則經(jīng)過多少秒后,P與點Q第一次在△ABC的哪條邊上相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD中,BECD,BFAD,垂足分別為E、F,若CE=2,DF=1,EBF=60°,求平行四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊答案