【題目】如圖1,,點,分別在,上,射線點順時針旋轉至便立即逆時針回轉,射線點順時針旋轉至便立即逆時針回轉.射線轉動的速度是每秒度,射線轉動的速度是每秒度.

1)直接寫出的大小為_______;

2)射線、轉動后對應的射線分別為、,射線交直線于點,若射線比射線先轉動秒,設射線轉動的時間為秒,求為多少時,直線直線

3)如圖2,若射線、同時轉動秒,轉動的兩條射線交于點,作,點上,請?zhí)骄?/span>的數(shù)量關系.

【答案】160°;(2)當秒或秒時直線;(3關系不會變化,

【解析】

(1)根據(jù)得到,再根據(jù)直線平行的性質即可得到答案;

(2)設燈轉動t秒,直線直線,分情況討論重合前平行、重合后平行即可得到答案;

(3)根據(jù)補角的性質表示出,再根據(jù)三角形內角和即可表示出,即可得到答案;

解:(1)∵

,

(兩直線平行,內錯角相等)

故結果為:;

2)設燈轉動t秒,直線直線,

①當時,如圖,

,

,

,

,

解得

②當時,如圖,

,

,

解得,

綜上所述,當秒或秒時直線

3關系不會變化,

理由:設射線AM轉動時間為m秒,

,

,,

,

,,

,

,

,

,

,

,

關系不變.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點D是直線AB上的一動點(不和A、B重合),BECDE,交直線ACF

(1)點D在邊AB上時,試探究線段BD、ABAF的數(shù)量關系,并證明你的結論;

(2)點DAB的延長線或反向延長線上時,(1)中的結論是否成立?若不成立,請寫出正確結論并證明。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為菱形,E為對角線AC上的一個動點,連結DE并延長交射線AB于點F,連結BE

1)求證:∠AFD=EBC;

2)若∠DAB=90°,當BEF為等腰三角形時,求∠EFB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD的面積為20,對角線AC,BD相交于點O,點E,F(xiàn)分別是AB,CD上的點,且AE=DF,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校學生在電腦培訓前后各參加了一次水平相同的考試,考分都以同一標準劃分成不合格、合格優(yōu)秀三個等級.為了了解電腦培訓的效果,隨機抽取其中32名學生兩次考試考分等級制成統(tǒng)計圖(如圖),試回答下列問題:

(1)32名學生經過培訓,考分等級不合格的百分比由________下降到________;

(2)估計該校640名學生,培訓后考分等級為合格優(yōu)秀的學生共有多少名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點ADy軸正半軸上,點B、C分別在x軸上,CD平分∠ACB,與y軸交于D點,∠CAO=90°-BDO.

1)求證:AC=BC

2)如圖2,點C的坐標為(40),點EAC上一點,且∠DEA=DBO,求BC+EC的長;

3)如圖3,過DDFACF點,點HFC上一動點,點GOC上一動點,當HFC上移動、點GOC上移動時,始終滿足∠GDH=GDO+FDH,試判斷FHGH、OG這三者之間的數(shù)量關系,寫出你的結論并加以證明.

(圖3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),分別以直角△ABC的三邊為直徑向外作三個半圓,其面積分別用S1、S2、S3表示,則不難說明S1=S2+S3。(1)如圖(2),分別以直角△ABC三邊為一邊向外作三個正方形,其面積分別用S1、S2、S3表示,那么S1、S2、S3之間有什么關系?(2)如圖(3),若分別以直角△ABC三邊為一邊向外作三個正三角形,其面積分別用S1、S2、S3表示,試確定S1、S2、S3之間的關系并加以說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10如圖,已知ABC為等邊三角形,點D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點F。

1求證:ABE≌△CAD;2BFD的度數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合題:如圖1,△ABC中,∠B=30°,AB=3,BC=4,則△ABC的面積等于
(1)【回顧】
如圖1,△ABC中,∠B=30°,AB=3,BC=4,則△ABC的面積等于

(2)【探究】
圖2是同學們熟悉的一副三角尺,一個含有30°的角,較短的直角邊長為a;另一個含有45°的角,直角邊長為b,小明用兩副這樣的三角尺拼成一個平行四邊形ABCD(如圖3),用了兩種不同的方法計算它的面積,從而推出sin75°= ,小麗用兩副這樣的三角尺拼成了一個矩形EFGH(如圖4),也推出sin75°= ,請你寫出小明或小麗推出sin75°= 的具體說理過程.

(3)【應用】
在四邊形ABCD中,AD∥BC,∠D=75°,BC=6,CD=5,AD=10(如圖5)

①點E在AD上,設t=BE+CE,求t2的最小值;
②點F在AB上,將△BCF沿CF翻折,點B落在AD上的點G處,點G是AD的中點嗎?說明理由.

查看答案和解析>>

同步練習冊答案