【題目】如圖,拋物線y=a(x﹣1)2+4與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,過(guò)點(diǎn)C作CD∥x軸交拋物線的對(duì)稱軸于點(diǎn)D,連接BD,已知點(diǎn)A的坐標(biāo)為(﹣1,0)
(1)求該拋物線的解析式;
(2)求梯形COBD的面積.
【答案】
(1)解:將A(﹣1,0)代入y=a(x﹣1)2+4中,得:0=4a+4,
解得:a=﹣1,
則拋物線解析式為y=﹣(x﹣1)2+4
(2)解:對(duì)于拋物線解析式,令x=0,得到y(tǒng)=3,即OC=3,
∵拋物線解析式為y=﹣(x﹣1)2+4的對(duì)稱軸為直線x=1,
∴CD=1,
∵A(﹣1,0),
∴B(3,0),即OB=3,
則S梯形COBD= =6
【解析】(1)將A坐標(biāo)代入拋物線解析式,求出a的值,即可確定出解析式;(2)拋物線解析式令x=0求出y的值,求出OC的長(zhǎng),根據(jù)對(duì)稱軸求出CD的長(zhǎng),令y=0求出x的值,確定出OB的長(zhǎng),利用梯形面積公式即可求出梯形COBD的面積.
【考點(diǎn)精析】關(guān)于本題考查的二次函數(shù)的性質(zhì)和拋物線與坐標(biāo)軸的交點(diǎn),需要了解增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減小;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小;一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒(méi)有交點(diǎn).才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】端午節(jié),在大明湖舉行第七屆會(huì)民健身運(yùn)動(dòng)會(huì)龍舟比賽中,甲、乙兩隊(duì)在500米的賽道上,所劃行的路程y(m)與時(shí)間x(min)之間的函數(shù)關(guān)系如圖所示,下列說(shuō)法,其中正確的有( 。
①乙隊(duì)比甲隊(duì)提前0.25min到達(dá)終點(diǎn);
②0.5min后,乙隊(duì)比甲隊(duì)每分鐘快40m;
③當(dāng)乙隊(duì)劃行110m時(shí),此時(shí)落后甲隊(duì)15m;
④自1.5min開(kāi)始,甲隊(duì)若要與乙隊(duì)同時(shí)到達(dá)終點(diǎn),甲隊(duì)的速度需要提高到260m/min.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線lAC:y=﹣交x軸、y軸分別為A、C兩點(diǎn),直線BC⊥AC交x軸于點(diǎn)B.
(1)求點(diǎn)B的坐標(biāo)及直線BC的解析式;
(2)將△OBC關(guān)于BC邊翻折,得到△O′BC,過(guò)點(diǎn)O′作直線O′E垂直x軸于點(diǎn)E,F(xiàn)是y軸上一點(diǎn),P是直線O′E上任意一點(diǎn),P、Q兩點(diǎn)關(guān)于x軸對(duì)稱,當(dāng)|PA﹣PC|最大時(shí),請(qǐng)求出QF+FC的最小值;
(3)若M是直線O′E上一點(diǎn),且QM=3,在(2)的條件下,在平面直角坐標(biāo)系中,是否存在點(diǎn)N,使得以Q、F、M、N四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接中國(guó)森博會(huì),某商家計(jì)劃從廠家采購(gòu)A,B兩種產(chǎn)品共20件,產(chǎn)品的采購(gòu)單價(jià)(元/件)是采購(gòu)數(shù)量(件)的一次函數(shù),下表提供了部分采購(gòu)數(shù)據(jù).
采購(gòu)數(shù)量(件) | 1 | 2 | … |
A產(chǎn)品單價(jià)(元/件) | 1480 | 1460 | … |
B產(chǎn)品單價(jià)(元/件) | 1290 | 1280 | … |
(1)設(shè)A產(chǎn)品的采購(gòu)數(shù)量為x(件),采購(gòu)單價(jià)為y1(元/件),求y1與x的關(guān)系式;
(2)經(jīng)商家與廠家協(xié)商,采購(gòu)A產(chǎn)品的數(shù)量不少于B產(chǎn)品數(shù)量的 ,且A產(chǎn)品采購(gòu)單價(jià)不低于1200元,求該商家共有幾種進(jìn)貨方案;
(3)該商家分別以1760元/件和1700元/件的銷售單價(jià)售出A,B兩種產(chǎn)品,且全部售完,在(2)的條件下,求采購(gòu)A種產(chǎn)品多少件時(shí)總利潤(rùn)最大,并求最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的兩個(gè)頂點(diǎn)A,B的坐標(biāo)分別為(﹣2,0),(﹣1,0),BC⊥x軸,將△ABC以y軸為對(duì)稱軸作軸對(duì)稱變換,得到△A′B′C′(A和A′,B和B′,C和C′分別是對(duì)應(yīng)頂點(diǎn)),直線y=x+b經(jīng)過(guò)點(diǎn)A,C′,則點(diǎn)C′的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸,y軸分別交于點(diǎn)A(6,0),B(0,8),點(diǎn)C的坐標(biāo)為(0,m),過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E,點(diǎn)D為x軸上的一動(dòng)點(diǎn),連接CD,DE,以CD,DE為邊作CDEF.
(1)當(dāng)0<m<8時(shí),求CE的長(zhǎng)(用含m的代數(shù)式表示);
(2)當(dāng)m=3時(shí),是否存在點(diǎn)D,使CDEF的頂點(diǎn)F恰好落在y軸上?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)D在整個(gè)運(yùn)動(dòng)過(guò)程中,若存在唯一的位置,使得CDEF為矩形,請(qǐng)求出所有滿足條件的m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)反比例函數(shù) ,下列說(shuō)法不正確的是( )
A.它的圖象在第一、三象限
B.點(diǎn)(﹣1,﹣4)在它的圖象上
C.當(dāng)x<0時(shí),y隨x的增大而減小
D.當(dāng)x>0時(shí),y隨x的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是我國(guó)古代計(jì)時(shí)器“漏壺”的示意圖,在壺內(nèi)盛一定量的水,水從壺底的小孔漏出.壺壁內(nèi)畫有刻度,人們根據(jù)壺中水面的位置計(jì)時(shí),用x表示時(shí)間,y表示壺底到水面的高度,則y與x的函數(shù)關(guān)系式的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“珍重生命,注意安全!”同學(xué)們?cè)谏舷聦W(xué)途中一定要注意騎車安全.小明騎單車上學(xué),當(dāng)他騎了一段時(shí)間,想起要買某本書,于是又折回到剛經(jīng)過(guò)的新華書店,買到書后繼續(xù)去學(xué)校,以下是他本次所用的時(shí)間與路程的關(guān)系示意圖.根據(jù)圖中提供的信息回答下列問(wèn)題:
(1)圖中自變量是______,因變量是______;
(2)小明家到學(xué)校的路程是 米;
(3)小明在書店停留了 分鐘;
(4)本次上學(xué)途中,小明一共行駛了 米,一共用了 分鐘;
(5)我們認(rèn)為騎單車的速度超過(guò)300米/分鐘就超越了安全限度.問(wèn):在整個(gè)上學(xué)的途中哪個(gè)時(shí)間段小明騎車速度最快,速度在安全限度內(nèi)嗎?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com