【題目】如圖,山坡上有一顆樹AB,樹底部B點(diǎn)到山腳C點(diǎn)的距離BC為6 米,山坡的坡角為30°,小宇在山腳的平地F處測量這棵樹的高,點(diǎn)C到測角儀EF的水平距離CF=1米,從E處測得樹頂部A的仰角為45°,樹底部B的仰角為20°,求樹AB的高度.
(參考數(shù)值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
【答案】解:在Rt△BCD中,CD=BC×cos∠BCD=6×=9,
則DF=CD+CF=10(米),
∵四邊形GDFE為矩形,
∴GE=DF=10(米),
∵∠AEG=45°,
∴AG=GE=10(米),
在Rt△BEG中,BG=GE×tan∠BEG≈10×0.36=3.6(米),
則AB=AG-BG=10-3.6=6.4(米).
答:旗桿AB的高度為6.4米.
【解析】根據(jù)AB=AG-BG,先求出AG和BG,在Rt△ABG中,∠AEG=45°,則AG=GE=DF=CD+CF,需要求出CD,BC已知,∠BCD的度數(shù)已知,可求得;在在Rt△BEG中,∠BEG已知,GE前面已求得,則解答案完成.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B、C、D在⊙O上,DE⊥OA,DF⊥OB,垂足分別為E,F(xiàn),若∠EDF=50°,則∠C的度數(shù)為( )
A.40°
B.50°
C.65°
D.130°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A、B兩地相距4千米,上午11:00,甲從A地出發(fā)步行到B地,11:20乙從B地出發(fā)騎自行車到A地,甲乙兩人離A地的距離(千米)與甲所用時(shí)間(分)之間的關(guān)系如圖所示,由圖中的信息可知,乙到達(dá)A地的時(shí)間為( )
A. 上午11:40 B. 上午11:35 C. 上午11:45 D. 上午11:50
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形A1B1C1D1、A2B2C2D2……按照如圖所示的方式放置,點(diǎn)A1、A2、A3、…和點(diǎn)C1、C2、C3、…分別在直線y=kx+b(k>0)和x軸上,已知B1(1,1),B2(3,2),B3(7,4)則B2018的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,lA、lB分別表示A步行與B騎車在同一路上行駛的路程S與時(shí)間t的關(guān)系.
(1)B出發(fā)時(shí)與A相距 千米.
(2)B走了一段路后,自行車發(fā)生故障,進(jìn)行修理,所用的時(shí)間是 小時(shí).
(3)B出發(fā)后 小時(shí)與A相遇.
(4)求出A行走的路程S與時(shí)間t的函數(shù)關(guān)系式.
(5)若B的自行車不發(fā)生故障,保持出發(fā)時(shí)的速度前進(jìn), 小時(shí)與A相遇,相遇點(diǎn)離B的出發(fā)點(diǎn) 千米.在圖中表示出這個(gè)相遇點(diǎn)C.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABD和∠BDC的平分線交于點(diǎn)E,BE的延長線交CD于點(diǎn)F,且∠1+∠2=90°.猜想∠2與∠3的關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 ABC中,AD平分 BAC,按如下步驟作圖:
第一步,分別以點(diǎn)A、D為圓心,以大于 AD的長為半徑在AD兩側(cè)做弧,交于兩點(diǎn)M、N;
第二步,連接MN分別交AB、AC于點(diǎn)E、F;
第三步,連接DE、DF.
若BD=6,AF=4,CD=3,則BE的長是( ).
A.2
B.4
C.6
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形 ABCD 中,AB=AD,AC=5,∠DAB=∠DCB=90°, 則四邊形 ABCD 的面積為( )
A. 15 B. 14.5 C. 13 D. 12.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2015本溪,第9題,3分)如圖,在平面直角坐標(biāo)系中,直線AB與x軸交于點(diǎn)A(﹣2,0),與x軸夾角為30°,將△ABO沿直線AB翻折,點(diǎn)O的對應(yīng)點(diǎn)C恰好落在雙曲線()上,則k的值為( )
A. 4 B. ﹣2 C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com