【題目】通過類比聯(lián)想、引申拓展研究典型題目,可達到解一題知一類的目的.下面是一個案例,請補充完整.
原題:如圖1,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,
連接EF,則EF=BE+DF,試說明理由.
(1)思路梳理
∵AB=AD
∴把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合
∵∠ADC=∠B=90°
∴∠FDG=180°
∴點F、D、G共線
根據(jù) ,易證△AFG≌ ,進而得EF=BE+DF.
(2)聯(lián)想拓展
如圖2,在△ABC中,∠BAC=90°,AB=AC,點D、E均在邊BC上,且∠DAE=45°.猜想BD、DE、EC應(yīng)滿足的數(shù)量關(guān)系,并寫出推理過程.
【答案】(1)SAS;△AFE;(2) BD2+EC2=DE2
【解析】
試題分析:(1)根據(jù)三角形全等的條件可求解;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)和全等三角形的性質(zhì)與判定可求解.
試題解析:(1)SAS;△AFE
(2)把△ABD繞A點逆時針旋轉(zhuǎn)90°至△ACG,可使AB與AC重合,根據(jù)旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和勾股定理,可得到BD2+EC2=DE2。
推理過程如下:
∵AB=AC,
∴把△ABD繞A點逆時針旋轉(zhuǎn)90°至△ACG,可使AB與AC重合(如圖)。
且△ACG≌△ABD
∴AG=AD
∵△ABC中,∠BAC=90°,
∴∠ACB+∠ACG=∠ACB+∠B=90°,即∠ECG=90°。
∴EC2+CG2=EG2。
在△AEG與△AED中,
∠EAG=∠EAD。
AD=AG,AE=AE,
∴△AEG≌△AED(SAS)。
∴DE=EG。
又∵CG=BD,
∴BD2+EC2=DE2
科目:初中數(shù)學 來源: 題型:
【題目】對于二次函數(shù)y=3x2+2,下列說法:①最小值為2;②圖象的頂點是(3,2);③圖象與x軸沒有交點;④當x<﹣1時,y隨x的增大而增大.其中正確的是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知A、B兩地相距630千米,在A、B之間有汽車站C站,如圖1所示.客車由A地駛向C站、貨車由B地駛向A地,兩車同時出發(fā),勻速行駛,貨車的速度是客車速度的.圖2是客、貨車離C站的路程y1、y2(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系圖象.則下列說法不正確的是( )
A.貨車行駛2小時到達C站 B.貨車行駛完全程用時14小時
C.圖2中的點E的坐標是(7,180) D.客車的速度是60千米∕時
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知等腰Rt△ABC和等腰Rt△AED中,∠ACB=∠AED=90°,且AD=AC.
(1)發(fā)現(xiàn):如圖1,當點E在AB上且點C和點D重合時,若點M、N分別是DB、EC的中點,則MN與EC的位置關(guān)系是 ,MN與EC的數(shù)量關(guān)系是 .
(2)探究:若把(1)小題中的△AED繞點A順時針旋轉(zhuǎn)45°得到的圖2,連接BD和EC,并連接DB、EC的中點M、N,則MN與EC的位置關(guān)系和數(shù)量關(guān)系仍然能成立嗎?若成立,請給予證明,若不成立,請說明理由.
(3)若把(1)小題中的△AED繞點A逆時針旋轉(zhuǎn)45°得到的圖3,連接BD和EC,并連接DB、EC的中點M、N,則MN與EC的位置關(guān)系和數(shù)量關(guān)系仍然能成立嗎?若成立,請給予證明,若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為方便市民出行,減輕城市中心交通壓力,長沙市正在修建貫穿星城南北、東西的地鐵1、2號線.已知修建地鐵1號線24千米和2號線22千米共需投資265億元;若1號線每千米的平均造價比2號線每千米的平均造價多0.5億元.
(1)求1號線,2號線每千米的平均造價分別是多少億元?
(2)除1、2號線外,長沙市政府規(guī)劃到2018年還要再建91.8千米的地鐵線網(wǎng).據(jù)預(yù)算,這91.8千米地鐵線網(wǎng)每千米的平均造價是1號線每千米的平均造價的1.2倍,則還需投資多少億元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com