【題目】如圖,在△ABC中,AB=ACDBC邊的中點(diǎn),AE∥BC

1)作∠ADC的平分線DF,與AE交于點(diǎn)F;(用尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法)

2)在(1)的條件下,若AD=2,求DF的長(zhǎng).

【答案】1)作圖見(jiàn)解析;(22

【解析】

試題

(1)尺規(guī)作圖,作已知角的平分線;

(2)由“角平分線+平行線等腰三角形,這個(gè)基本圖形可得到AD=AF,DAF=90°,則由勾股定理即可得到DF的長(zhǎng).

試題解析:

1)如圖所示:

(2)∵AB=AC,DBC邊的中點(diǎn),

ADBC ADC=90°,

DF平分ADC

∴∠ADF=45°,

AEBC

∴∠DAF=∠ADC=90°,

∴△ADF為等腰直角三角形,

AD=2,

DF=2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC4,ABCDBD6,點(diǎn)ED點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿DA向點(diǎn)A勻速移動(dòng),點(diǎn)F從點(diǎn)C出發(fā),以每秒3個(gè)單位的速度沿CBC作勻速移動(dòng),點(diǎn)G從點(diǎn)B出發(fā)沿BD向點(diǎn)D勻速移動(dòng),三個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)有一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),其余兩點(diǎn)也隨之停止運(yùn)動(dòng).

1)試證明:ADBC

2)在移動(dòng)過(guò)程中,小芹發(fā)現(xiàn)當(dāng)點(diǎn)G的運(yùn)動(dòng)速度取某個(gè)值時(shí),有△DEG與△BFG全等的情況出現(xiàn),請(qǐng)你探究當(dāng)點(diǎn)G的運(yùn)動(dòng)速度取哪些值時(shí),△DEG與△BFG全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我校圖書(shū)館大樓工程在招標(biāo)時(shí),接到甲乙兩個(gè)工程隊(duì)的投標(biāo)書(shū),每施工一個(gè)月,需付甲工程隊(duì)工程款16萬(wàn)元,付乙工程隊(duì)12萬(wàn)元。工程領(lǐng)導(dǎo)小組根據(jù)甲乙兩隊(duì)的投標(biāo)書(shū)測(cè)算,可有三種施工方案:

1)甲隊(duì)單獨(dú)完成此項(xiàng)工程剛好如期完工;

2)乙隊(duì)單獨(dú)完成此項(xiàng)工程要比規(guī)定工期多用3個(gè)月;

3)若甲乙兩隊(duì)合作2個(gè)月,剩下的工程由乙隊(duì)獨(dú)做也正好如期完工。

你覺(jué)得哪一種施工方案最節(jié)省工程款,說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)Ax軸上,△ABO是直角三角形,∠ABO=90°,點(diǎn)B的坐標(biāo)為(﹣1,2),將△ABO繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△A1B1O,則過(guò)A1,B兩點(diǎn)的直線解析式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市在端午節(jié)期間開(kāi)展優(yōu)惠活動(dòng),凡購(gòu)物者可以通過(guò)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)的方式享受折扣優(yōu)惠,本次活動(dòng)共有兩種方式,方式一:轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)甲,指針指向 A區(qū)域時(shí),所購(gòu)買(mǎi)物品享受9折優(yōu)惠、指針指向其它區(qū)域無(wú)優(yōu)惠;方式二: 同時(shí)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)甲和轉(zhuǎn)盤(pán)乙,若兩個(gè)轉(zhuǎn)盤(pán)的指針指向每個(gè)區(qū)域的字母相同,所購(gòu)買(mǎi)物品享受8折優(yōu)惠,其它情況無(wú)優(yōu)惠.在每個(gè)轉(zhuǎn)盤(pán)中,指針指向每個(gè)區(qū)城的可能性相同(若指針指向分界線,則重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán))

(1)若顧客選擇方式一,則享受 9 折優(yōu)惠的概率為_______;

(2)若顧客選擇方式二,請(qǐng)用樹(shù)狀圖或列表法列出所有可能,并求顧客享受8折優(yōu)惠的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1:在四邊形ABCD中,ABAD,BAD120°,BADC90°EF分別是BC、CD上的點(diǎn).且∠EAF60°.探究圖中線段BEEF、FD之間的數(shù)量關(guān)系.

小王同學(xué)探究此問(wèn)題的方法是,延長(zhǎng)FD到點(diǎn)G,使DGBE.連結(jié)AG,先證明ABE≌△ADG,再證明AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是   ;

探索延伸:

如圖2,若在四邊形ABCD中,ABAD,BD180°E、F分別是BC、CD上的點(diǎn),且∠EAFBAD,上述結(jié)論是否仍然成立,并說(shuō)明理由;

實(shí)際應(yīng)用:

如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°A處,艦艇乙在指揮中心南偏東70°B處,并且兩艦艇到指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正東方向以60海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時(shí)的速度前進(jìn)1.5小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá)E,F處,且兩艦艇之間的夾角為70°,試求此時(shí)兩艦艇之間的距離?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)已知關(guān)于x的方程2x2﹣mx﹣m2=0有一個(gè)根是1,求m的值;

(2)已知關(guān)于x的方程(2x﹣m)(mx+1)=(3x+1)(mx﹣1)有一個(gè)根是0,求另一個(gè)根和m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(題文)(1)閱讀理解:

如圖1,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.

解決此問(wèn)題可以用如下方法:延長(zhǎng)AD到點(diǎn)E使DE=AD,連接BE(或?qū)ⅰ鰽CD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到△EBD,把AB,AC,2AD集中在△ABE中.利用三角形三邊的關(guān)系即可判斷中線AD的取值范圍是_________;

(2)問(wèn)題解決:

如圖2,在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證BE+CF>EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A(﹣4,2)、B(n,﹣4)兩點(diǎn)是一次函數(shù)y=kx+b和反比例函數(shù)y=圖象的兩個(gè)交點(diǎn).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求AOB的面積;

(3)觀察圖象,直接寫(xiě)出不等式kx+b﹣>0的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案