【題目】如圖,已知∠BAC=40°,把△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn),使得點(diǎn)B與CA的延長(zhǎng)線(xiàn)上的點(diǎn)D重合,連接CE.
(1)△ABC旋轉(zhuǎn)了多少度?
(2)連接CE,試判斷△AEC的形狀.
(3)若∠ACE=20°,求∠AEC的度數(shù).
【答案】(1)140°;(2)△AEC是等腰三角形;(3)20°.
【解析】試題分析:(1)根據(jù)題意求出∠BAD的度數(shù),即旋轉(zhuǎn)角的度數(shù),得到答案;
(2)根據(jù)旋轉(zhuǎn)變換的性質(zhì)得到AC=AE,根據(jù)等腰三角形的判定定理判斷即可;
(3)根據(jù)三角形內(nèi)角和定理和等腰三角形的性質(zhì)解答即可.
試題解析:(1)∵∠BAC=40°,∴∠BAD=140°,∴△ABC旋轉(zhuǎn)了140°.(3分)
(2)由旋轉(zhuǎn)的性質(zhì)可知AC=AE,∴△AEC是等腰三角形.(6分)
(3)由旋轉(zhuǎn)的性質(zhì)可知,∠CAE=∠BAD=140°,又AC=AE,
∴∠AEC=(180°-140°)÷2=20°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B、D、C、F在一條直線(xiàn)上,且BD=FC,AB=EF.
(1)請(qǐng)你只添加一個(gè)條件(不再加輔助線(xiàn)),使△ABC≌△EFD,你添加的條件是 ;
(2)添加了條件后,證明△ABC≌△EFD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班為了解學(xué)生一學(xué)期做義工的時(shí)間情況,對(duì)全班50名學(xué)生進(jìn)行調(diào)查,按做義工的時(shí)間(單位:小時(shí)),將學(xué)生分成五類(lèi): 類(lèi)( ),類(lèi)(),類(lèi)(),類(lèi)(),類(lèi)(),繪制成尚不完整的條形統(tǒng)計(jì)圖如圖11.
根據(jù)以上信息,解答下列問(wèn)題:
(1) 類(lèi)學(xué)生有 人,補(bǔ)全條形統(tǒng)計(jì)圖;
(2)類(lèi)學(xué)生人數(shù)占被調(diào)查總?cè)藬?shù)的 %;
(3)從該班做義工時(shí)間在的學(xué)生中任選2人,求這2人做義工時(shí)間都在 中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y=y1+y2,y1與x+1成正比例,y2與x+1成反比例,當(dāng)x=0時(shí),y=﹣5;當(dāng)x=2時(shí),y=﹣7.
(1)求y與x的函數(shù)關(guān)系式;
(2)當(dāng)y=5時(shí),求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一塊直角三角形的綠地,量得兩直角邊長(zhǎng)分別為6 m,8 m,現(xiàn)在要將綠地?cái)U(kuò)充成等腰三角形,且擴(kuò)充部分是以8 m為直角邊的直角三角形,求擴(kuò)充后等腰三角形綠地的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次“尋寶”游戲中,已知尋寶圖上兩標(biāo)志點(diǎn)A和點(diǎn)B的坐標(biāo)分別為(-3,0),(5,0),“寶藏”分別埋在C(3,4)和D(-2,3)兩點(diǎn).
(1)請(qǐng)建立平面直角坐標(biāo)系,并確定“寶藏”的位置;
(2)計(jì)算四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,是直線(xiàn)上的點(diǎn),.
()如圖,過(guò)點(diǎn)作,并截取,連接、、,判斷的形狀并證明.
()如圖,是直線(xiàn)上的一點(diǎn),直線(xiàn)、相交于點(diǎn),且,求證.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】利用我們學(xué)過(guò)的知識(shí),可以導(dǎo)出下面這個(gè)形式優(yōu)美的等式:
a2+b2+c2-ab-bc-ac= [(a-b)2+(b-c)2+(c-a)2],
該等式從左到右的變形,不僅保持了結(jié)構(gòu)的對(duì)稱(chēng)性,還體現(xiàn)了數(shù)學(xué)的和諧、簡(jiǎn)潔美.
(1)請(qǐng)你檢驗(yàn)這個(gè)等式的正確性;
(2)若a=2 016,b=2 017,c=2 018,你能很快求出a2+b2+c2-ab-bc-ac的值嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】利用我們學(xué)過(guò)的知識(shí),可以導(dǎo)出下面這個(gè)形式優(yōu)美的等式:
a2+b2+c2-ab-bc-ac= [(a-b)2+(b-c)2+(c-a)2],
該等式從左到右的變形,不僅保持了結(jié)構(gòu)的對(duì)稱(chēng)性,還體現(xiàn)了數(shù)學(xué)的和諧、簡(jiǎn)潔美.
(1)請(qǐng)你檢驗(yàn)這個(gè)等式的正確性;
(2)若a=2 016,b=2 017,c=2 018,你能很快求出a2+b2+c2-ab-bc-ac的值嗎?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com