【題目】正方形的邊長為3,點,分別在射線,上運動,且.連接,作所在直線于點,連接.
(1)如圖1,若點是的中點,與之間的數(shù)量關系是______;
(2)如圖2,當點在邊上且不是的中點時,(1)中的結論是否成立?若成立給出證明;若不成立,說明理由;
(3)如圖3,當點,分別在射線,上運動時,連接,過點作直線的垂線,交直線于點,連接,求線段長的最大值.
【答案】(1);(2)成立,證明見解析;(3).
【解析】
(1)如圖(見解析),連接BE,先根據(jù)正方形的性質、三角形全等的判定定理與性質得出,再根據(jù)圓周角定理得出,從而可得,然后根據(jù)角互余得出,最后根據(jù)等腰三角形的定義即可得;
(2)如圖(見解析),連接BE,先根據(jù)正方形的性質、三角形全等的判定定理與性質得出,再根據(jù)圓周角定理得出,從而可得,然后根據(jù)角互余得出,最后根據(jù)等腰三角形的定義即可得;
(3)先根據(jù)角互余得出,再根據(jù)四邊形的內(nèi)角和、領補角定義得出,然后根據(jù)三角形全等的判定定理與性質得出,又根據(jù)三角形全等的判定定理與性質得出,最后根據(jù)三角形的三邊關系定理即可得.
(1),證明如下:
如圖,連接BE
在正方形中,,
∵,
∴,即
在和中,
∴
∴
∵,
∴、兩點都在以為直徑的圓上
∴
∴
∵,
∴
∴
又
∴;
(2)(1)中的結論仍然成立,證明如下:
如圖,連接
在正方形中,,
∵,
∴,即
在和中,
∴
∴
∵,
∴、兩點都在以為直徑的圓上
∴
∴
∵,
∴
∴
又
∴;
(3)如圖,連接
∵,
∴
∵
又
∴
在和中,
∴
∴
在和中,
∴
∴
由(2)知,
∴
∵
∴,
在中,由三角形的三邊關系定理得:
∴當、、三點共線時,的長最大,最大值為
即線段長的最大值是.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸正半軸相交于、兩點,與軸相交于點,對稱軸為直線,且,則下列結論:
①;②;③;④關于的方程有一個根為,其中正確的結論個數(shù)有( )
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某區(qū)教育系統(tǒng)為了更好地宣傳掃黑除惡專項斗爭,印制了應知應會手冊,該區(qū)教育局想了解教師對掃黑除惡專項斗爭應知應會知識掌握程度,抽取了部分教師進行了測試,并將測試成績繪制成下面兩幅統(tǒng)計圖,請根據(jù)統(tǒng)計圖中提供的信息,回答下面問題:
(1)計算樣本中,成績?yōu)?/span>98分的教師有 人,并補全兩個統(tǒng)計圖;
(2)樣本中,測試成績的眾數(shù)是 ,中位數(shù)是 ;
(3)若該區(qū)共有教師6880名,根據(jù)此次成績估計該區(qū)大約有多少名教師已全部掌握掃黑除惡專項斗爭應知應會知識?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在學習完概率的有關內(nèi)容后,小軍與小波共同發(fā)明了一種利用“字母棋”進行比勝負的游戲,他們制作了5顆棋子,并在每顆棋子上標注相應的字母(棋子除了字母外,材質、大小、質地均相同),其中標有字母X的棋子有1顆,標有字母Y和Z的棋子分別有2顆.游戲規(guī)定:將5顆棋子放入一個不透明的袋子中,然后從5顆棋子中隨機摸出兩顆棋子,若摸到的兩顆棋子標有字母X,則小軍勝;若摸到兩顆相同字母的棋子,則小波勝,其余情況為平局,則游戲重新進行.
(1)求隨機摸到標有字母Y的棋子的概率;
(2)在游戲剛準備進行的同時,數(shù)學課代表小亮對游戲的公平性產(chǎn)生了質疑,請你通過列表法或者畫樹狀圖的方法幫小亮同學驗證該游戲的規(guī)則是否公平.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2﹣2ax﹣2的圖象(記為拋物線C1)頂點為M,直線l:y=2x﹣a與x軸,y軸分別交于A,B.
(1)對于拋物線C1,以下結論正確的是 ;
①對稱軸是:直線x=1;②頂點坐標(1,﹣a﹣2);③拋物線一定經(jīng)過兩個定點.
(2)當a>0時,設△ABM的面積為S,求S與a的函數(shù)關系;
(3)將二次函數(shù)y=ax2﹣2ax﹣2的圖象C1繞點P(t,﹣2)旋轉180°得到二次函數(shù)的圖象(記為拋物線C2),頂點為N.
①當﹣2≤x≤1時,旋轉前后的兩個二次函數(shù)y的值都會隨x的增大而減小,求t的取值范圍;
②當a=1時,點Q是拋物線C1上的一點,點Q在拋物線C2上的對應點為Q',試探究四邊形QMQ'N能否為正方形?若能,求出t的值,若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解學生最喜歡的球類運動情況,隨機選取該校部分學生進行調查,要求每名學生只寫一類最喜歡的球類運動.以下是根據(jù)調查結果繪制的統(tǒng)計圖表的一部分.
根據(jù)以上信息,解答下列問題:
(1)被調查的學生中,最喜歡乒乓球的有 人,最喜歡籃球的學生數(shù)占被調查總人數(shù)的百分比為 %;
(2)被調查學生的總數(shù)為 人,其中,最喜歡籃球的有 人,最喜歡足球的學生數(shù)占被調查總人數(shù)的百分比為 %;
(3)該校共有450名學生,根據(jù)調查結果,估計該校最喜歡排球的學生數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c.若b2+c2=2b+4c﹣5且a2=b2+c2﹣bc,則△ABC的面積為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于,兩點,其中點的坐標為,點的坐標為.
(1)根據(jù)函數(shù)圖象,直接寫出滿足的的取值范圍是_______;
(2)求這兩個函數(shù)的表達式;
(3)點在線段上,且,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD和等邊△AEF都內(nèi)接于圓O,EF與BC、CD別相交于點G、H.若AE=6,則EG的長為( 。
A.B.3﹣C.D.2﹣3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com