某工程機(jī)械廠根據(jù)市場(chǎng)需求,計(jì)劃生產(chǎn)A、B兩種型號(hào)的大型挖掘機(jī)共100臺(tái),該廠所籌生產(chǎn)資金不少于22 400萬元,但不超過22 500萬元,且所籌資金全部用于生產(chǎn)此兩型挖掘機(jī),所生產(chǎn)的此兩型挖掘機(jī)可全部售出,此兩型挖掘機(jī)的生產(chǎn)成本和售價(jià)如下表:
型號(hào) | A | B |
成本(萬元/臺(tái)) | 200 | 240 |
售價(jià)(萬元/臺(tái)) | 250 | 300 |
解:(1)設(shè)生產(chǎn)A型挖掘機(jī)x臺(tái),則B型挖掘機(jī)(100﹣x)臺(tái),
由題意得22400≤200x+240(100﹣x)≤22500,解得37.5≤x≤40。
∵x取非負(fù)整數(shù),∴x為38,39,40。
∴有三種生產(chǎn)方案:
①A型38臺(tái),B型62臺(tái);
②A型39臺(tái),B型61臺(tái);
③A型40臺(tái),B型60臺(tái)。
(2)設(shè)獲得利潤(rùn)W(萬元),由題意得W=50x+60(100﹣x)=6000﹣10x,
∵﹣10<0,∴W隨x的增大而減小。
∴當(dāng)x=38時(shí),W最大=5620(萬元)。
∴生產(chǎn)A型38臺(tái),B型62臺(tái)時(shí),獲得最大利潤(rùn)。
(3)由題意得W=(50+m)x+60(100﹣x)=6000+(m﹣10)x
∴當(dāng)0<m<10,則x=38時(shí),W最大,即生產(chǎn)A型38臺(tái),B型62臺(tái);
當(dāng)m=10時(shí),m﹣10=0則三種生產(chǎn)方案獲得利潤(rùn)相等;
當(dāng)m>10,則x=40時(shí),W最大,即生產(chǎn)A型40臺(tái),B型60臺(tái)。
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,直線PA是一次函數(shù)的圖象,直線PB是一次函數(shù)的圖象.
(1)求A、B、P三點(diǎn)的坐標(biāo);(2)求四邊形PQOB的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖所示,四邊形OABC是矩形,點(diǎn)D在OC邊上,以AD為折痕,將△OAD向上翻折,點(diǎn)O恰好落在BC邊上的點(diǎn)E處,若△ECD的周長(zhǎng)為2,△EBA的周長(zhǎng)為6.
(1)矩形OABC的周長(zhǎng)為 ;
(2)若A點(diǎn)坐標(biāo)為,求線段AE所在直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
(12分)汽車油箱中的余油量Q(升)是它行駛的時(shí)間(小時(shí))的一次函數(shù).某天該汽車外出時(shí),油箱中余油量與行駛時(shí)間的變化關(guān)系如圖:
(1)根據(jù)圖象,求油箱中的余油Q與行駛時(shí)間的函數(shù)關(guān)系.(7分)
(2)從開始算起,如果汽車每小時(shí)行駛40千米,當(dāng)油箱中余油 20升時(shí),該汽車行駛了多少千米?(5分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知:如圖,反比例函數(shù)的圖象經(jīng)過點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(1,3),點(diǎn)B的縱坐標(biāo)為1,點(diǎn)C的坐標(biāo)為(2,0).
(1)求該反比例函數(shù)的解析式;
(2)求直線BC的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)中,直角梯形OABC的邊OC、OA分別在x軸、y軸上,AB∥OC,∠AOC=900,∠BCO=450,BC=,點(diǎn)C的坐標(biāo)為(-18,0).
(1)求點(diǎn)B的坐標(biāo);
(2)若直線DE交梯形對(duì)角線BO于點(diǎn)D,交y軸于點(diǎn)E,且OE=4,OD=2BD,求直線DE的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,一次函數(shù)的圖象與x軸、y軸分別相交于點(diǎn)A、B.P是射線BO上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B重合),過點(diǎn)P作PC⊥AB,垂足為C,在射線CA上截取CD=CP,連接PD.設(shè)BP=t.
(1)t為何值時(shí),點(diǎn)D恰好與點(diǎn)A重合?
(2)設(shè)△PCD與△AOB重疊部分的面積為S,求S與t的函數(shù)關(guān)系式,并直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
21.(2013年四川攀枝花8分)某文具店準(zhǔn)備購進(jìn)甲,乙兩種鉛筆,若購進(jìn)甲種鋼筆100支,乙種鉛筆50支,需要1000元,若購進(jìn)甲種鋼筆50支,乙種鋼筆30支,需要550元.
(1)求購進(jìn)甲,乙兩種鋼筆每支各需多少元?
(2)若該文具店準(zhǔn)備拿出1000元全部用來購進(jìn)這兩種鋼筆,考慮顧客需求,要求購進(jìn)甲中鋼筆的數(shù)量不少于乙種鋼筆數(shù)量的6倍,且不超過乙種鋼筆數(shù)量的8倍,那么該文具店共有幾種進(jìn)貨方案?
(3)若該文具店銷售每支甲種鋼筆可獲利潤(rùn)2元,銷售每支乙種鋼筆可獲利潤(rùn)3元,在第(2)問的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,反比例函數(shù)的圖象與一次函數(shù)y=kx+b的圖象相交于兩點(diǎn)A(m,3)和B(﹣3,n).
(1)求一次函數(shù)的表達(dá)式;
(2)觀察圖象,直接寫出使反比例函數(shù)值大于一次函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com