圖中各圖是在同一直角坐標(biāo)系內(nèi),二次函數(shù)與一次函數(shù)的大致圖象,有且只有一個是正確的,正確的是
D

試題分析:本題可先由一次函數(shù)圖象得到字母系數(shù)的正負(fù),再與二次函數(shù)的圖象相比較看是否一致,用排除法即可解答.
A、一次函數(shù)的圖象過一、三象限,a>0,與二次函數(shù)開口向下,即a<0相矛盾,錯誤;
B、一次函數(shù)的圖象過二、四象限,a<0,與二次函數(shù)開口向上,a>0相矛盾,錯誤;
C、,故此二次函數(shù)與x軸的兩個交點為(,0),(-1,0),一次函數(shù)與x軸的交點為(,0),故兩函數(shù)在x軸上有交點,錯誤;
排除A、B、C,故選D.
點評:此類問題是初中數(shù)學(xué)的重點,是中考常見題,一般難度不大,需熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于A(-3,0),B(1,0)兩點,與y軸交于點C.

(1)求這個二次函數(shù)的解析式;
(2)點P是直線AC上方的拋物線上一動點,是否存在點P,使△ACP的面積最大?若存在,求出點P的坐標(biāo);若不存在,說明理由;
(3)點Q是直線AC上方的拋物線上一動點,過點Q作QE垂直于軸,垂足為E.是否存在點Q,使以點B、Q、E為頂點的三角形與△AOC相似?若存在,直接寫出點Q的坐標(biāo);若不存在,說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的頂點(-1,-4)且過點(0,-3),直線l是它的對稱軸。

(1)求此拋物線的解析式;
(2)設(shè)拋物線交x軸于點A、B(A在B的左邊),交y軸于點C,P為l上的一動點,當(dāng)△PBC的周長最小時,求P點的坐標(biāo)。
(3)在直線l上是否存在點M,使△MBC是等腰三角形,若存在,直接寫出符合條件的點M的坐標(biāo);若不存在請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

,已知A(-4,0),B(-1,4), 將線段AB繞點O,順時針旋轉(zhuǎn)90°,得到線段A′B′

(1)求直線BB′的解析式;
(2)拋物線y1=ax2-19cx+16c經(jīng)過A′,B′兩點,求拋物線的解析式
并畫出它的圖象;
(3)在(2)的條件下,若直線A′B′的函數(shù)解析式為y2=mx+n,觀察圖
象,當(dāng)y1y2時,寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

隨著“六一”臨近,兒童禮品開始熱銷,某廠每月固定生產(chǎn)甲、乙兩種禮品共100萬件,甲禮品每件成本15元,乙禮品每件成本12元,現(xiàn)甲禮品每件售價22元,乙禮品每件售價18元,且都能全部售出。
(1)若某月銷售收入2000萬元,則該月甲、乙禮品的產(chǎn)量分別是多少?
(2)如果每月投入的總成本不超過1380萬元,應(yīng)怎樣安排甲、乙禮品的產(chǎn)量,可使所獲得的利潤最大?
(3)該廠在銷售中發(fā)現(xiàn):甲禮品售價每提高1元,銷量會減少4萬件,乙禮品售價不變,不管多少產(chǎn)量都能賣出。在(2)的條件下,為了獲得更大的利潤,該廠決定提高甲禮品的售價,并重新調(diào)整甲、乙禮品的生產(chǎn)數(shù)量,問:提高甲禮品的售價多少元時可獲得最大利潤,最大利潤為多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖二次函數(shù)的圖象與軸交于(– 1,0),(3,0);下列說法正確的是(    )
A.
B.當(dāng)時,y隨x值的增大而增大
C.
D.當(dāng)時,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

校運動會鉛球比賽時,小林推出的鉛球行進(jìn)的高度(米)與水平距離(米)滿足關(guān)系式為:,則小林這次鉛球推出的距離是      米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,把兩個全等的Rt△AOB和Rt△COD分別置于平面直角坐標(biāo)系中,使直角邊OB、OD在x軸上.已知點A(1,2)在二次函數(shù)y=ax2+(a+5)x的圖象上.

(1)求該二次函數(shù)的關(guān)系式;
(2)點C是否在此二次函數(shù)的圖象上,說明理由;
(3)若點P為直線OC上一個動點,過點P作y軸的平行線交拋物線于點M,問是否存在這樣的點P,使得四邊形ABMP為平行四邊形?若存在,求出此時點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,拋物線y=x2x與x軸交于O,A兩點. 半徑為1的動圓(⊙P),圓心從O點出發(fā)沿拋物線向靠近點A的方向移動;半徑為2的動圓(⊙Q),圓心從A點出發(fā)沿拋物線向靠近點O的方向移動. 兩圓同時出發(fā),且移動速度相等,當(dāng)運動到P,Q兩點重合時同時停止運動. 設(shè)點P的橫坐標(biāo)為t .

(1)點Q的橫坐標(biāo)是         (用含t的代數(shù)式表示);
(2)若⊙P與⊙Q 相離,則t的取值范圍是          .

查看答案和解析>>

同步練習(xí)冊答案