【題目】A,B兩地相距200千米.早上8:00貨車甲從A地出發(fā)將一批物資運(yùn)往B地,行駛一段路程后出現(xiàn)故障,即刻停車與B地聯(lián)系.B地收到消息后立即派貨車乙從B地出發(fā)去接運(yùn)甲車上的物資.貨車乙遇到甲后,用了18分鐘將物資從貨車甲搬運(yùn)到貨車乙上,隨后開往B地.兩輛貨車離開各自出發(fā)地的路程y(千米)與時(shí)間x(小時(shí))的函數(shù)關(guān)系如圖所示.(通話等其他時(shí)間忽略不計(jì))
(1)求貨車乙在遇到貨車甲前,它離開出發(fā)地的路程y關(guān)于x的函數(shù)表達(dá)式.
(2)因?qū)嶋H需要,要求貨車乙到達(dá)B地的時(shí)間比貨車甲按原來的速度正常到達(dá)B地的時(shí)間最多晚1個(gè)小時(shí),問貨車乙返回B地的速度至少為每小時(shí)多少千米?
【答案】(1)y=80x﹣128(1.6≤x≤3.1);(2)貨車乙返回B地的車速至少為75千米/小時(shí)
【解析】
(1)先設(shè)出函數(shù)關(guān)系式y=kx+b(k≠0),觀察圖象,經(jīng)過兩點(diǎn)(1.6,0),(2.6,80),代入求解即可得到函數(shù)關(guān)系式;
(2)先求出貨車甲正常到達(dá)B地的時(shí)間,再求出貨車乙出發(fā)回B地時(shí)距離貨車甲比正常到達(dá)B地晚1個(gè)小時(shí)的時(shí)間以及故障地點(diǎn)距B地的距離,然后設(shè)貨車乙返回B地的車速為v千米/小時(shí),最后列出不等式并求解即可.
解:(1)設(shè)函數(shù)表達(dá)式為y=kx+b(k≠0),
把(1.6,0),(2.6,80)代入y=kx+b,得 ,
解得: ,
∴y關(guān)于x的函數(shù)表達(dá)式為y=80x﹣128(1.6≤x≤3.1);
(2)根據(jù)圖象可知:貨車甲的速度是80÷1.6=50(km/h)
∴貨車甲正常到達(dá)B地的時(shí)間為200÷50=4(小時(shí)),
18÷60=0.3(小時(shí)),4+1=5(小時(shí)),
當(dāng)y=200﹣80=120 時(shí),
120=80x﹣128,
解得x=3.1,
5﹣3.1﹣0.3=1.6(小時(shí)),
設(shè)貨車乙返回B地的車速為v千米/小時(shí),
∴1.6v≥120,
解得v≥75.
答:貨車乙返回B地的車速至少為75千米/小時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的網(wǎng)格中,均在格點(diǎn)上,請(qǐng)用無刻度的直尺作圖(保留作圖痕跡,不寫作法).
(1)在圖1中找一格點(diǎn),使得為等腰三角形(找到一個(gè)即可);
(2)在圖2中作出的角平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)報(bào)載,在“百萬家庭低碳行,垃圾分類要先行”活動(dòng)中,某地區(qū)對(duì)隨機(jī)抽取的1000名公民的年齡段分布情況和對(duì)垃圾分類所持態(tài)度進(jìn)行調(diào)查,并將調(diào)查結(jié)果分別繪成條形圖(圖1)、扇形圖(圖2).
(1)圖2中所缺少的百分?jǐn)?shù)是_________;
(2)這次隨機(jī)調(diào)查中,如果公民年齡的中位數(shù)是正整數(shù),那么這個(gè)中位數(shù)所在年齡段是_________(填寫年齡段);
(3)這次隨機(jī)調(diào)查中,年齡段是“25歲以下”的公民中“不贊成”的有5名,它占“25歲以下”人數(shù)的百分?jǐn)?shù)是________;
(4)如果把所持態(tài)度中的“很贊同”和“贊同”統(tǒng)稱為“支持”,那么這次被調(diào)查公民中“支持”的人有_______名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=30°,AB=AC,AD是BC邊上的中線,∠ACE=∠BAC,CE交AB于點(diǎn)E,交AD于點(diǎn)F.若BC=2,則EF的長為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑OA=2,B是⊙O上的動(dòng)點(diǎn)(不與點(diǎn)A重合),過點(diǎn)B作⊙O的切線BC,BC=OA,連結(jié)OC,AC.當(dāng)△OAC是直角三角形時(shí),其斜邊長為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P的坐標(biāo)是(a,b),從-2,-1,0,1,2這五個(gè)數(shù)中任取一個(gè)數(shù)作為a的值,再從余下的四個(gè)數(shù)中任取一個(gè)數(shù)作為b的值,則點(diǎn)P(a,b)在平面直角坐標(biāo)系中第二象限內(nèi)的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),對(duì)稱軸與軸交于點(diǎn),點(diǎn)在拋物線上.
(1)求直線的解析式.
(2)點(diǎn)為直線下方拋物線上的一點(diǎn),連接,.當(dāng)的面積最大時(shí),連接,,點(diǎn)是線段的中點(diǎn),點(diǎn)是線段上的一點(diǎn),點(diǎn)是線段上的一點(diǎn),求的最小值.
(3)點(diǎn)是線段的中點(diǎn),將拋物線與軸正方向平移得到新拋物線,經(jīng)過點(diǎn),的頂點(diǎn)為點(diǎn),在新拋物線的對(duì)稱軸上,是否存在點(diǎn),使得為等腰三角形?若存在,直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為實(shí)現(xiàn)2020年全面脫貧的目標(biāo),我國實(shí)施“精準(zhǔn)扶貧”戰(zhàn)略,從而使貧困戶的生活條件得到改善,生活質(zhì)量明顯提高.為了切實(shí)關(guān)注、關(guān)愛貧困家庭學(xué)生,某校對(duì)全校各班貧困家庭學(xué)生的人數(shù)情況進(jìn)行了統(tǒng)計(jì),統(tǒng)計(jì)發(fā)現(xiàn)班上貧困家庭學(xué)生人數(shù)分別有2名,3名,4名,5名,6名,共五種情況.并將其制成了如下兩幅不完整的統(tǒng)計(jì)圖:
請(qǐng)回答下列問題:
(1)求該校一共有班級(jí)________個(gè);在扇形統(tǒng)計(jì)圖中,貧困家庭學(xué)生人數(shù)有5名的班級(jí)所對(duì)應(yīng)扇形圓心角為________°;
(2)將條形圖補(bǔ)充完整;
(3)甲、乙、丙是貧困生中的三名學(xué)生,學(xué)校決定從這三名學(xué)生中隨機(jī)抽取兩名代表到市里進(jìn)行發(fā)言,用列表法或畫樹狀圖法,求同時(shí)抽到甲,乙兩名學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為的直徑,為的切線,,交于點(diǎn),為弧的中點(diǎn),連接,交于點(diǎn).
(1)求證:為的切線;
(2)求證:;
(3)若 ,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com