【題目】如圖,等邊△ABC內(nèi)接于⊙O,P是上任一點(點P不與點A、B重合),連AP、BP,過點C作CM∥BP交PA的延長線于點M.
(1)填空:∠APC=____ 度,∠BPC=____度;
(2)求證:△ACM≌△BCP;
(3)若PA=1,PB=2,求梯形PBCM的面積.
【答案】(1)∠APC=60°,∠BPC=60°;(2)證明見解析;(3)
【解析】試題分析:(1)同弧所對圓周角相等.(2)證明A、P、B、C四點共圓,再利用AAS證明三角形全等.(3) 作PH⊥CM于H,利用(2)全等證明PCM是等邊三角形,Rt△PMH是30°特殊三角形,可求得梯形PBCM的面積.
試題解析:
解答:(1)解:∠APC=60°,∠BPC=60°;
(2)證明:∵CM∥BP,
∴∠BPM+∠M=180°,
∠PCM=∠BPC,
∵∠BPC=∠BAC=60°,
∴∠PCM=∠BPC=60°,
∴∠M=180°-∠BPM=180°-(∠APC+∠BPC)=180°-120°=60°,
∴∠M=∠BPC=60°,
又∵A、P、B、C四點共圓,
∴∠PAC+∠PBC=180°,
∵∠MAC+∠PAC=180°,
∴∠MAC=∠PBC,
∵AC=BC,
∴△ACM≌△BCP;
(3)解:作PH⊥CM于H,
∵△ACM≌△BCP,
∴CM=CP AM=BP,
又∠M=60°,
∴△PCM為等邊三角形,
∴CM=CP=PM=PA+AM=PA+PB=1+2=3,
在Rt△PMH中,∠MPH=30°,
∴PH=,
∴S梯形PBCM=(PB+CM)×PH=(2+3)×= .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E是平行四邊形ABCD的邊CD的中點,延長AE交BC的延長線于點F.
(1)求證:△ADE≌△FCE.
(2)若AB=8,BC=5,則EF的長為 時,AB⊥AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知正方形ABCD的頂點A,B分別在y軸和x軸上,邊CD交x軸的正半軸于點E.
(1)若A(0,a),且,求A點的坐標;
(2)在(l)的條件下,若3AO=4EO,求D點的坐標;
(3)如圖2,連結(jié)AC交x軸于點F,點H是A點上方y軸上一動點,以AF、AH為邊作平行四邊形AFGH,使G點恰好落在AD邊上,試探討BF,HG與DG的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在探究一次函數(shù)的圖像性質(zhì)時我們有如下發(fā)現(xiàn):
①系數(shù)決定了函數(shù)圖像的坡度,越大則圖像坡度越大(越靠近軸),越小則圖像坡度越小(越靠近軸);
②常數(shù)項決定了圖像與軸的交點,即函數(shù)圖像與軸交點坐標始終為.
基于以上發(fā)現(xiàn),我們得出結(jié)論:如果兩個一次函數(shù)的值相同,那么兩個一次函數(shù)的圖像平行.反之,如果兩直線平行,則兩條直線所對應(yīng)的函數(shù)表達式的值一定相等:把函數(shù)圖像沿軸向上(或向下) 平移個單位, 系數(shù)保持不變, 常數(shù)變?yōu)?/span> (或).如:函數(shù)和的圖像互相平行:函數(shù)的圖像向上平移2個單位后所得函數(shù)表達式為.
據(jù)此回答下列問題:
(1) 把函數(shù)的圖像向上平移4個單位后所得函數(shù)的表達式為____;
(2)把函數(shù)的圖像向 (上或下)平移 個單位可得到函數(shù)的圖像;
(3)若直線經(jīng)過點且與直線平行,求出直線的表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,對角線的交點M(2,2).規(guī)定“把正方形ABCD先沿x軸翻折,再向左平移1個單位”為一次變換.如此這樣,連續(xù)經(jīng)過2014次變換后,正方形ABCD的對角線交點M的坐標變?yōu)椋ā 。?/span>
A. (﹣2012,2)B. (﹣2012,﹣2)C. (﹣2013,﹣2)D. (﹣2013,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上有A、B兩點.
(1)分別寫出A、B兩點表示的數(shù): 、 ;
(2)若點C表示﹣0.5,把點C表示在如圖所示的數(shù)軸上;
(3)將點B向左移動3個單位長度,得到點D,點A、B、C、D所表示的四個數(shù)用“<”連接的結(jié)果: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,D是BC的中點,E是AD的中點,過點A作AF∥BC交BE的延長線于點F,連接CF.
(1)求證:AF=BD.
(2)求證:四邊形ADCF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形AOCD繞頂點A(0,5)逆時針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到如圖所示的位置時,邊BE交邊CD于M,且ME=2,CM=4.
(1)求AD的長;
(2)求經(jīng)過A、B、D三點的拋物線的解析式;
(3)在直線AM下方,(2)中的拋物線上是否存在點P,使S△PAM =?若存在,求出P點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)觀察一列數(shù)a1=3,a2=32,a3=33,a4=34,…,發(fā)現(xiàn)從第二項開始,每一項與前一項之比是一個常數(shù),這個常數(shù)是_______;根據(jù)此規(guī)律,如果an(n為正整數(shù))表示這個數(shù)列的第n項,那么a6=_______,an=_______;(可用冪的形式表示)
(2)如果想要求l+2+22+23+...+210的值,可令S10=l+2+22+23+...+210①,將①式兩邊同乘以2,得_______②,由②減去①式,得S10=_______.
(3)若(1)中數(shù)列共有20項,設(shè)S20=3+32+33+34+…+320,請利用上述規(guī)律和方法計算S20的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com