【題目】閱讀理解:

如圖①,在四邊形ABCD的邊AB上任取一點E(點E不與A、B重合),分別連接ED、EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點;如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強相似點.解決問題:

1)如圖①,∠A=∠B=∠DEC45°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由;

2)如圖②,在矩形ABCD中,A、B、CD四點均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖②中畫出矩形ABCD的邊AB上的強相似點;

3)如圖③,將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處,若點E恰好是四邊形ABCM的邊AB上的一個強相似點,試確定E點位置.

【答案】1)點E是四邊形ABCD的邊AB上的相似點,理由見解析;(2)見解析;(3)點EAB的中點時,點E恰好是四邊形ABCM的邊AB上的一個強相似點

【解析】

1)要證明點E是四邊形ABCDAB邊上的相似點,只要證明有一組三角形相似就行,很容易證明△ADE∽△BEC,所以問題得解.

2)以CD為直徑畫弧,取該弧與AB的一個交點即為所求.

3)由點E是矩形ABCDAB邊上的一個強相似點,得△AEM∽△BCE∽△ECM,根據(jù)相似三角形的對應角相等,可求得∠BCE∠BCD30°,利用含30°角的直角三角形性質(zhì)可得BEAB之間的數(shù)量關(guān)系.

解:(1∵∠A∠B∠DEC45°,

∴∠AED+∠ADE135°∠AED+∠CEB135°

∴∠ADE∠CEB,

△ADE△BEC中,∵∠A∠B∠ADE∠BEC,

∴△ADE∽△BEC,

E是四邊形ABCD的邊AB上的相似點.

2)如圖所示:點E是四邊形ABCD的邊AB上的強相似點,

3)如圖中,

E是四邊形ABCM的邊AB上的一個強相似點,

∴△AEM∽△BCE∽△ECM

∴∠BCE∠ECM∠AEM

由折疊可知:△ECM≌△DCM,

∴∠ECM∠DCM,CECD,

∴∠BCE∠BCD30°,BECEAB

EAB的中點時,點E恰好是四邊形ABCM的邊AB上的一個強相似點.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在菱形ABCD中,對角線ACBD相交于點O,再添加一個條件,仍不能判定四邊形ABCD是矩形的是 ( 。

A.ABADB.OAOBC.ACBDD.DCBC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】操作與證明:如圖1,把一個含45°角的直角三角板ECF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點C重合,點E、F分別在正方形的邊CB、CD上,連接AF.取AF中點M,EF的中點N,連接MD、MN.

(1)連接AE,求證:AEF是等腰三角形;

猜想與發(fā)現(xiàn):

(2)在(1)的條件下,請判斷MD、MN的數(shù)量關(guān)系和位置關(guān)系,得出結(jié)論.

結(jié)論1:DM、MN的數(shù)量關(guān)系是 ;

結(jié)論2:DM、MN的位置關(guān)系是

拓展與探究:

(3)如圖2,將圖1中的直角三角板ECF繞點C順時針旋轉(zhuǎn)180°,其他條件不變,則(2)中的兩個結(jié)論還成立嗎?若成立,請加以證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(中考·安徽)如圖,已知反比例函數(shù)y=與一次函數(shù)y=k2x+b的圖象交于A(1,8),B(-4,m).

(1)求k1,k2,b的值;

(2)求△AOB的面積;

(3)若M(x1,y1),N(x2,y2)是反比例函數(shù)y=的圖象上的兩點,且x1<x2,y1<y2,指出點M,N位于哪個象限,并簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在三角形ABC中,AB=24,AC=18,D是AC上一點,AD=12,在AB上取一點E,使A、D、E三點組成的三角形與ABC相似,則AE=__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,飛機在一定高度上沿水平直線飛行,先在點處測得正前方小島的俯角為,面向小島方向繼續(xù)飛行到達處,發(fā)現(xiàn)小島在其正后方,此時測得小島的俯角為.如果小島高度忽略不計,求飛機飛行的高度(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,射線AN上有一點B,AB5,tanMAN,點C從點A出發(fā)以每秒3個單位長度的速度沿射線AN運動,過點CCDAN交射線AM于點D,在射線CD上取點F,使得CFCB,連結(jié)AF.設點C的運動時間是t(秒)(t0).

1)當點C在點B右側(cè)時,求AD、DF的長.(用含t的代數(shù)式表示)

2)連結(jié)BD,設BCD的面積為S平方單位,求St之間的函數(shù)關(guān)系式.

3)當AFD是軸對稱圖形時,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)ykx+bk0)和反比例函數(shù)ym0)交于點A4,1)與點B(﹣1n).

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求△AOB的面積;

3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】AB兩組卡片共5張,A組的三張分別寫有數(shù)字246B組的兩張分別寫有35.它們除了數(shù)字外沒有任何區(qū)別,

1隨機從A組抽取一張,求抽到數(shù)字為2的概率;

2隨機地分別從A組、B組各抽取一張,請你用列表或畫樹狀圖的方法表示所有等可能的結(jié)果.現(xiàn)制定這樣一個游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請問這樣的游戲規(guī)則對甲乙雙方公平嗎?為什么?

查看答案和解析>>

同步練習冊答案