【題目】如圖,平行四邊形ABCD中,AB=4,AD=6,∠ABC=60°,∠BAD與∠ABC的平分線AE、BF交于點P,連接PD,則tan∠ADP的值為( )
A.B.C.D.
【答案】A
【解析】
作PH⊥AD于H,可得四邊形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,從而得到PH=,DH=5,然后利用銳角三角函數的定義求解即可.
解:作PH⊥AD于H,
∵四邊形ABCD是平行四邊形,
∴AD∥BC.
∴∠DAE=∠AEB.
∵AE是角平分線,
∴∠DAE=∠BAE.
∴∠BAE=∠AEB.
∴AB=BE.
同理AB=AF.
∴AF=BE.
∴四邊形ABEF是平行四邊形.
∵AB=BE,
∴四邊形ABEF是菱形.
∵∠ABC=60°,AB=4,
∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,
∴AP=AB=2,
∴PH=,DH=5,
∴tan∠ADP==.
故選:A.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,函數的圖象經過點,直線與x軸交于點.
(1)求的值;
(2)過第二象限的點作平行于x軸的直線,交直線于點C,交函數的圖象于點D.
①當時,判斷線段PD與PC的數量關系,并說明理由;
②若,結合函數的圖象,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3與x軸交于A(﹣1,0)和B(3,0)兩點,與y軸交于點C,點D是該拋物線的頂點,分別連接AC、CD、AD.
(1)求拋物線的函數解析式以及頂點D的坐標;
(2)在拋物線上取一點P(不與點C重合)、并分別連接PA、PD,當△PAD的面積與△ACD的面積相等時,求點P的坐標:
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,CA=CB,∠ACB=α(0°<α<180°).點P是平面內不與A,C重合的任意一點,連接AP,將線段AP繞點P逆時針旋轉α得到線段DP,連接AD,CP.點M是AB的中點,點N是AD的中點.
(1)問題發(fā)現:如圖1,當α=60°時,的值是 ,直線MN與直線PC相交所成的較小角的度數是 .
(2)類比探究:如圖2,當α=120°時,請寫出的值及直線MN與直線PC相交所成的較小角的度數,并就圖2的情形說明理由.
(3)解決問題:如圖3,當α=90°時,若點E是CB的中點,點P在直線ME上,請直接寫出點B,P,D在同一條直線上時的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(題文)“校園詩歌大賽”結束后,張老師和李老師將所有參賽選手的比賽成績(得分均為整數)進行整理,并分別繪制成扇形統(tǒng)計圖和頻數直方圖部分信息如下:
(1)本次比賽參賽選手共有 人,扇形統(tǒng)計圖中“69.5~79.5”這一組人數占總參賽人數的百分比為 ;
(2)賽前規(guī)定,成績由高到低前60%的參賽選手獲獎.某參賽選手的比賽成績?yōu)?/span>78分,試判斷他能否獲獎,并說明理由;
(3)成績前四名是2名男生和2名女生,若從他們中任選2人作為獲獎代表發(fā)言,試求恰好選中1男1女的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司有A型產品40件,B型產品60件,分配給下屬甲、乙兩個商店銷售,其中70件給甲店,30件給乙店,且都能賣完.兩商店銷售這兩種產品每件的利潤(元)如下表:
A型利潤(元/件) | B型利潤(元/件) | |
甲店 | 180 | 150 |
乙店 | 120 | 110 |
(1)設分配給甲店A型產品x件,這家公司賣出這100件產品的總利潤為W(元),求W關于x的函數關系式,并寫出x的取值范圍;
(2)若要求總利潤超過14960元,有多少種不同分配方案?請列出具體方案;
(3)為了促銷,公司決定僅對甲店A型產品讓利銷售,每件讓利a元,但讓利后A型產品的每件利潤仍高于甲店B型產品的每件利潤,甲店的B型產品以及乙店的A,B型產品的每件利潤不變,該公司如何設計分配方案,使總利潤達到最大?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=+,點D為邊AB上一點,連接CD.將△ACD沿直線CD翻折至△ECD,CE恰好過AB的中點F.連接AE交CD的延長線于點H,若∠ACD=15°,則DH的長為( )
A.B.C.D.1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=90°,D為平面內的一點.
(1)如圖1,當點D在邊BC上時,且∠BAD=30°,求證:AD=BD.
(2)如圖2,當點D在△ABC的外部,且滿足∠BDC﹣∠ADC=45°,求證:BD=AD.
(3)如圖3,若AB=4,當D、E分別為AB、AC的中點,把△DAE繞A點順時針旋轉,設旋轉角為α(0<α≤180°),直線BD與CE的交點為P,連接PA,直接寫出△PAC面積的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在口ABCD中,E是CD的延長線上一點,BE與AD交于點F,DE= CD
(1)求證:△ABF∽△CEB
(2)若△DEF的面積為2,求△CEB的面積
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com