【題目】為了解市民對“垃圾分類知識”的知曉程度,某數(shù)學(xué)學(xué)習(xí)興趣小組對市民進行 隨機抽樣的問卷調(diào)查,調(diào)查結(jié)果分為“A.非常了解”、“B.了解”、“C.基本了解”、“D.不太了解”四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖(圖1,圖2), 請根據(jù)圖中的信息解答下列問題.

1)這次調(diào)查的市民人數(shù)為________人,圖2中,_________;

2)圖1中的條形統(tǒng)計圖中B等級的人數(shù);

3)在圖2中的扇形統(tǒng)計圖中,求“C.基本了解”所在扇形的圓心角度數(shù);

4)據(jù)統(tǒng)計,2018年該市約有市民500萬人,那么根據(jù)抽樣調(diào)查的結(jié)果,可估計對“垃圾分類知識”的知曉程度為“A.非常了解”的市民約有多少萬人?

【答案】11000,35;(2350;(372°;(4)約有140萬人

【解析】

1)用條形統(tǒng)計圖中C等級的人數(shù)除以扇形統(tǒng)計圖中C等級所占百分比即可求出本次調(diào)查的人數(shù),用A等級的人數(shù)除以總?cè)藬?shù)即可求出m,然后用1減去其它三個等級所占百分比即可求出n;

2)用總?cè)藬?shù)×n%即為B等級的人數(shù);

3)用360°×C等級所占百分比即可求出結(jié)果;

4)用500×A等級所占百分比即得結(jié)果.

解:(1)這次調(diào)查的市民人數(shù)為(人),

,

;

故答案為:1000,35;

2(人),

答:等級的人數(shù)是350人;

3,

答:“C.基本了解”所在扇形的圓心角度數(shù)為72°;

4)根據(jù)題意得:(萬人),

答:估計對“垃圾分類知識”的知曉程度為“A.非常了解”的市民約有140萬人.

【等級】

本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖和利用樣本估計總體等知識,屬于基本題型,正確理解題意、熟練掌握上述基本知識是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形內(nèi)接于,點上一點,連接、、

(1)如圖1,求證:DEC+BEC= 180°;

(2)如圖2,過點CCFCEBE于點F,連接AF MAE的中點,連接DM并延長交AF于點N,求證: DNAF;

(3)如圖3,在(2) 的條件下,連接OM,若AB=10,OM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,以點P(2,a)為圓心的⊙Py軸相切,直線y=x與⊙P相交于點A、B,且AB的長為2,則a的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,是直線上的一動點(不與點重合),連接的右側(cè)以為斜邊作等腰直角三角形.點的中點,連接.

[問題發(fā)現(xiàn)]

1)如圖(1),當(dāng)點的中點時,線段的數(shù)量關(guān)系是______,的位置關(guān)系是______;

 

[猜想論證]

2)如圖(2),當(dāng)點在邊上且不是的中點時,(1)中的結(jié)論是否仍然成立?若成立,請僅就圖(2)中的情況給出證明;若不成立,請說明理由.

[拓展應(yīng)用]

3)若,其他條件不變,連接.當(dāng)是等邊三角形時,請直接寫出的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,△ABC的頂點A,C分別是直線y=x+4與坐標(biāo)軸的交點,點B的坐標(biāo)為(﹣2,0),點D是邊AC上的一點,DEBC于點E,點F在邊AB上,且D,F兩點關(guān)于y軸上的某點成中心對稱,連結(jié)DF,EF.設(shè)點D的橫坐標(biāo)為mEF2l,請?zhí)骄浚?/span>

①線段EF長度是否有最小值.

②△BEF能否成為直角三角形.

小明嘗試用觀察﹣猜想﹣驗證﹣應(yīng)用的方法進行探究,請你一起來解決問題.

1)小明利用幾何畫板軟件進行觀察,測量,得到lm變化的一組對應(yīng)值,并在平面直角坐標(biāo)系中以各對應(yīng)值為坐標(biāo)描點(如圖2).請你在圖2中連線,觀察圖象特征并猜想lm可能滿足的函數(shù)類別.

2)小明結(jié)合圖1,發(fā)現(xiàn)應(yīng)用三角形和函數(shù)知識能驗證(1)中的猜想,請你求出l關(guān)于m的函數(shù)表達式及自變量的取值范圍,并求出線段EF長度的最小值.

3)小明通過觀察,推理,發(fā)現(xiàn)△BEF能成為直角三角形,請你求出當(dāng)△BEF為直角三角形時m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著網(wǎng)絡(luò)資源日趨豐富,更多人選擇在線自主學(xué)習(xí),在線學(xué)習(xí)方式有在線閱讀、在線聽課、在線答題、在線討論.濟川中學(xué)初二年級隨機抽取部分學(xué)生進行你對哪類在線學(xué)習(xí)方式最感興趣的調(diào)查(每位同學(xué)只能選一項),并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.根據(jù)圖中信息,解答下列問題:

1)補全條形統(tǒng)計圖;

2)求扇形統(tǒng)計圖中在線閱讀對應(yīng)的扇形圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校體育社團活動計劃開設(shè)足球、籃球、排球、乒乓球四個體育興趣小組,每個學(xué)生只能選報一項參加活動,為了解該社團成員選擇興趣小組的情況,某調(diào)查小組在社團中進行了一次抽樣調(diào)查,繪制了如下尚不完整的統(tǒng)計圖表.

根據(jù)以上信息解答下列問題:

1)本次抽樣調(diào)查的樣本容量為 ,扇形統(tǒng)計圖中的值為

2)補全條形統(tǒng)計圖;

3)若該學(xué)校有學(xué)生人,有的學(xué)生選擇了參加體育社團活動,請你估計該校選擇排球和足球這兩個興趣小組的學(xué)生大約共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明大學(xué)畢業(yè)回家鄉(xiāng)創(chuàng)業(yè)第一期培植盆景與花卉各50盆售后統(tǒng)計,盆景的平均每盆利潤是160花卉的平均每盆利潤是19,調(diào)研發(fā)現(xiàn):

①盆景每增加1,盆景的平均每盆利潤減少2;每減少1盆景的平均每盆利潤增加2;②花卉的平均每盆利潤始終不變.

小明計劃第二期培植盆景與花卉共100,設(shè)培植的盆景比第一期增加x,第二期盆景與花卉售完后的利潤分別為W1,W2(單位元)

(1)用含x的代數(shù)式分別表示W1,W2;

(2)當(dāng)x取何值時第二期培植的盆景與花卉售完后獲得的總利潤W最大,最大總利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O切線,切點為AOB與⊙O交于E,CD是圓上的兩點,且CA平分∠DCE,若AB,∠B30°,則DE的長是_____

查看答案和解析>>

同步練習(xí)冊答案