【題目】某通訊公司推出①、②兩種通訊收費(fèi)方式供用戶選擇,其中一種有月租費(fèi),另一種無(wú)月租費(fèi),且兩種收費(fèi)方式的通訊時(shí)間x(分鐘)與收費(fèi)y(元)之間的函數(shù)關(guān)系如圖所示.
(1)有月租費(fèi)的收費(fèi)方式是(填①或②),月租費(fèi)是元;
(2)分別求出①、②兩種收費(fèi)方式中y與自變量x之間的函數(shù)關(guān)系式;
(3)請(qǐng)你根據(jù)用戶通訊時(shí)間的多少,給出經(jīng)濟(jì)實(shí)惠的選擇建議.
【答案】
(1)①;30
(2)解:設(shè)y1=k1x+30,y2=k2x,由題意得:將(500,80),(500,100)分別代入即可:
500k1+30=80,
∴k1=0.1,
500k2=100,
∴k2=0.2
故所求的解析式為y1=0.1x+30; y2=0.2x
(3)解:當(dāng)通訊時(shí)間相同時(shí)y1=y2,得0.2x=0.1x+30,解得x=300;
當(dāng)x=300時(shí),y=60.
故由圖可知當(dāng)通話時(shí)間在300分鐘內(nèi),選擇通話方式②實(shí)惠;
當(dāng)通話時(shí)間超過(guò)300分鐘時(shí),選擇通話方式①實(shí)惠;
當(dāng)通話時(shí)間在300分鐘時(shí),選擇通話方式①、②一樣實(shí)惠
【解析】解:(1)①;30; (1)根據(jù)當(dāng)通訊時(shí)間為零的時(shí)候的函數(shù)值可以得到哪種方式有月租,哪種方式?jīng)]有,有多少;(2)根據(jù)圖象經(jīng)過(guò)的點(diǎn)的坐標(biāo)設(shè)出函數(shù)的解析式,用待定系數(shù)法求函數(shù)的解析式即可;(3)求出當(dāng)兩種收費(fèi)方式費(fèi)用相同的時(shí)候自變量的值,以此值為界說(shuō)明消費(fèi)方式即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l:y=﹣x+1與x軸,y軸分別交于A,B兩點(diǎn),點(diǎn)P,Q是直線l上的兩個(gè)動(dòng)點(diǎn),且點(diǎn)P在第二象限,點(diǎn)Q在第四象限,∠POQ=135°.
(1)求△AOB的周長(zhǎng);
(2)設(shè)AQ=t>0,試用含t的代數(shù)式表示點(diǎn)P的坐標(biāo);
(3)當(dāng)動(dòng)點(diǎn)P,Q在直線l上運(yùn)動(dòng)到使得△AOQ與△BPO的周長(zhǎng)相等時(shí),記tan∠AOQ=m,若過(guò)點(diǎn)A的二次函數(shù)y=ax2+bx+c同時(shí)滿足以下兩個(gè)條件:
①6a+3b+2c=0;
②當(dāng)m≤x≤m+2時(shí),函數(shù)y的最大值等于 ,求二次項(xiàng)系數(shù)a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接建黨90周年,某校組織了以“黨在我心中”為主題的電子小報(bào)制作比賽,評(píng)分結(jié)果只有60,70,80,90,100五種.現(xiàn)從中隨機(jī)抽取部分作品,對(duì)其份數(shù)及成績(jī)進(jìn)行整理,制成如下兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息,解答下列問(wèn)題:
(1)求本次抽取了多少份作品,并補(bǔ)全兩幅統(tǒng)計(jì)圖;
(2)已知該校收到參賽作品共900份,請(qǐng)估計(jì)該校學(xué)生比賽成績(jī)達(dá)到90分以上(含90分)的作品有多少份?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:經(jīng)過(guò)三角形的一個(gè)頂點(diǎn)的線段把三角形分成兩個(gè)小三角形,如果其中一個(gè)三角形是等腰三角形,另外一個(gè)三角形和原三角形的三個(gè)內(nèi)角分別相等,那么把這條線段定義為原三角形的“和諧分割線”.例如如圖1:等腰直角三角形斜邊上的中線就是一條“和諧分割線”.
(1)判斷(對(duì)的打“√”,錯(cuò)的打“×”)
①等邊三角形不存在“和諧分割線”
②如果三角形中有一個(gè)角是另一個(gè)角的兩倍,則這個(gè)三角形必存在“和諧分割線”
(2)如圖2,Rt△ABC,∠C=90°,∠B=30°,AC=2,請(qǐng)畫出“和諧分割線”,并計(jì)算“和諧分割線”的長(zhǎng)度;
(3)如圖3,線段CD是△ABC的“和諧分割線”,∠A=42°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)邊長(zhǎng)為16m的正方形展廳,準(zhǔn)備用邊長(zhǎng)分別為1m和0.5m的兩種正方形地板磚鋪設(shè)其地面.要求正中心一塊是邊長(zhǎng)為1m的大地板磚,然后從內(nèi)到外一圈小地板磚、一圈大地板磚相間鑲嵌(如圖所示),則鋪好整個(gè)展廳地面共需要邊長(zhǎng)為1m的大地板磚塊.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某區(qū)共有甲、乙、丙三所高中,所有高二學(xué)生參加了一次數(shù)學(xué)測(cè)試.老師們對(duì)其中的一道題進(jìn)行了分析,把每個(gè)學(xué)生的解答情況歸結(jié)為下列四類情況之一:A﹣﹣概念錯(cuò)誤;B﹣﹣計(jì)算錯(cuò)誤;C﹣﹣解答基本正確,但不完整;D﹣﹣解答完全正確.各校出現(xiàn)這四類情況的人數(shù)分別占本校高二學(xué)生數(shù)的百分比如下表所示.
A | B | C | D | |
甲校(%) | 2.75 | 16.25 | 60.75 | 20.25 |
乙校(%) | 3.75 | 22.50 | 41.25 | 32.50 |
丙校(%) | 12.50 | 6.25 | 22.50 | 58.75 |
已知甲校高二有400名學(xué)生,這三所學(xué)校高二學(xué)生人數(shù)的扇形統(tǒng)計(jì)圖如圖.
根據(jù)以上信息,解答下列問(wèn)題:
(1)求全區(qū)高二學(xué)生總數(shù);
(2)求全區(qū)解答完全正確的學(xué)生數(shù)占全區(qū)高二學(xué)生總數(shù)的百分比m(精確到0.01%);
(3)請(qǐng)你對(duì)表中三校的數(shù)據(jù)進(jìn)行對(duì)比分析,給丙校高二數(shù)學(xué)老師提一個(gè)值得關(guān)注的問(wèn)題,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“一根彈簧原長(zhǎng)10cm,在彈性限度內(nèi)最多可掛質(zhì)量為5kg的物體,掛上物體后彈簧伸長(zhǎng)的長(zhǎng)度與所掛物體的質(zhì)量成正比, ,則彈簧的總長(zhǎng)度y(cm)與所掛物體質(zhì)量x(kg)之間的函數(shù)關(guān)系式為y=10+0.5x(0≤x≤5).”王剛同學(xué)在閱讀上面材料時(shí)發(fā)現(xiàn)部分內(nèi)容被墨跡污染,被污染的部分是確定函數(shù)關(guān)系式的一個(gè)條件,你認(rèn)為該條件可以是:(只需寫出1個(gè)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足為E.
(1)求證:△ABD≌△ECB;
(2)若∠DBC=50°,求∠DCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,坐標(biāo)原點(diǎn)O是正方形OABC的一個(gè)頂點(diǎn),已知點(diǎn)B坐標(biāo)為(1,7),過(guò)點(diǎn)P(a,0)(a>0)作PE⊥x軸,與邊OA交于點(diǎn)E(異于點(diǎn)O、A),將四邊形ABCE沿CE翻折,點(diǎn)A′、B′分別是點(diǎn)A、B的對(duì)應(yīng)點(diǎn),若點(diǎn)A′恰好落在直線PE上,則a的值等于( )
A.
B.
C.2
D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com