【題目】如圖,在平行四邊形ABCD中,過對角線BD中點的直線交AD、BC邊于F、E.
(1)求證:四邊形BEDF是平行四邊形;
(2)當四邊形BEDF是菱形時,寫出EF與BD的關(guān)系.
(3)若∠A=60°,AB=4,BC=6,四邊形BEDF是矩形,求該矩形的面積.

【答案】
(1)解:∵四邊形ABCD是平行四邊形,O是BD中點,

∴BC∥AD,OB=OD,

∴∠OBE=∠ODF,

又∵∠BOE=∠DOF,

∴△BOE≌△DOF(ASA),

∴EO=FO,

∴四邊形BEDF是平行四邊形


(2)解:當四邊形BEDF是菱形時,根據(jù)菱形的性質(zhì)可得:EF與BD互相垂直平分
(3)解:∵四邊形BEDF是矩形

∴∠AFB=90°

又∵∠A=60°,

∴∠ABF=30°,

∴AF= AB= ×4=2,

∴Rt△ABF中,BF=2 ,

又∵AD=BC=6,

∴DF=6﹣2=4,

∴矩形BEDF的面積=BF×DF=2 ×4=8


【解析】(1)根據(jù)平行四邊形ABCD的性質(zhì),判定△BOE≌△DOF(ASA),得出四邊形BEDF的對角線互相平分,進而得出結(jié)論;(2)根據(jù)根據(jù)菱形的性質(zhì)作出判斷:EF與BD互相垂直平分;(3)根據(jù)Rt△ABF的邊角關(guān)系,求得BF和AF,再根據(jù)矩形的性質(zhì),求得DF的長,最后計算矩形的面積.
【考點精析】掌握平行四邊形的判定與性質(zhì)和矩形的性質(zhì)是解答本題的根本,需要知道若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積;矩形的四個角都是直角,矩形的對角線相等.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩個正方形邊長分別為a、b

1)求陰影部分的面積.

2)如果a+b=17ab=60,求陰影部分的面積.

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/17/1904284875390976/1906414662729728/STEM/433f25b861984b60a78ae031a98667fa.png]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】動物學家通過大量的調(diào)查估計出,某種動物活到20歲的概率為0.8,活到25歲的概率是0.5,活到30歲的概率是0.3.現(xiàn)年20歲的這種動物活到25歲的概率為多少?現(xiàn)年25歲的這種動物活到30歲的概率為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC=4cm,把它沿對角線AC方向平移1cm得到菱形EFGH,則圖中陰影部分圖形的面積與四邊形EMCN的面積之比為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,

請寫出各點的坐標.

若把向上平移2個單位,再向左平移1個單位得到,寫出、的坐標,并在圖中畫出平移后圖形.

求出三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AC、BD是它的對角線,∠ABC=∠ADC=90°,∠BCD是銳角.

(1)寫出這個四邊形的一條性質(zhì)并證明你的結(jié)論.
(2)若BD=BC,證明:
(3)①若AB=BC=4,AD+DC=6,求 的值.
②若BD=CD,AB=6,BC=8,求sin∠BCD的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為a的正方形木塊在水平地面上沿直線滾動一周(沒有滑動),則它的中心點O所經(jīng)過的路徑長為(
A.4a
B.2 πa
C. πa
D. a

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AEBC,F(xiàn)GBC,1=2,D=3+60°,CBD=70°.

(1)求證:ABCD;

(2)求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班組織去方特參加秋季社會實踐活動,其中第一小組有x人,第二小組的人數(shù)比第一小組人數(shù)的30人,如果從第二小組調(diào)出10人到第一小組,那么:

1)兩個小組共有多少人?

2)調(diào)動后,第一小組的人數(shù)比第二小組多多少人?

查看答案和解析>>

同步練習冊答案