【題目】如圖,在⊙中,AB是直徑,BC是弦,BC=BD,連接CD交⊙于點E,∠BCD=∠DBE.

1)求證:BD是⊙的切線.

2)過點EEFABF,交BCG,已知DE=,EG=3,求BG的長.

【答案】1)見解析;(2BG的長為5.

【解析】

1)連接AE,根據(jù)圓周角定理可得∠BAE=BCE,由AB是直徑可得∠AEB=90°,進而可得∠BAE+ABE=90°,由∠BCD=DBE.利用等量代換即可求出∠ABD=90°,可得BD是⊙O的切線;(2)延長EF交⊙OH,根據(jù)垂徑定理可得,進而可得∠ECB=BEH,由∠EBC是公共角即可證明△EBC∽△GBE,根據(jù)相似三角形的性質可得,根據(jù)等腰三角形的性質可得∠D=BCE,利用等量代換可得∠D=DBE,可得BE=DE,由∠AFE=ABD=90°可得EF//BD,根據(jù)平行線性質可得∠D=CEF,即可證明∠BCE=CEF,可得CG=GE,即可得出BC=BG+EG,代入求出BG的長即可.

1)如圖,連接AE,則∠BAE=BCE

AB是直徑,

∴∠AEB=90°

∴∠BAE+ABE=90°,

∴∠ABE+BCE=90°,

∵∠BCE=DBE,

∴∠ABE+DBE=90°,即∠ABD=90°,

BD是⊙O的切線.

2)如圖,延長EF交⊙OH

EFAB,AB是直徑,

,

∴∠ECB=BEH,

∵∠EBC=GBE,

∴△EBC∽△GBE,

,

BC=BD,

∴∠D=BCE

∵∠BCE=DBE,

∴∠D=DBE,

BE=DE=,

∵∠AFE=ABD=90°,

BDEF,

∴∠D=CEF

∴∠BCE=CEF,

CG=GE=3,

BC=BG+CG=BG+3

,

BG=-8(舍)或BG=5

BG的長為5.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖①所示,已知正方形ABCD和正方形AEFG,連接DG,BE

1)發(fā)現(xiàn):當正方形AEFG繞點A旋轉,如圖②所示.

①線段DGBE之間的數(shù)量關系是   

②直線DG與直線BE之間的位置關系是   ;

2)探究:如圖③所示,若四邊形ABCD與四邊形AEFG都為矩形,且AD2AB,AG2AE時,上述結論是否成立,并說明理由.

3)應用:在(2)的情況下,連接BG、DE,若AE1AB2,求BG2+DE2的值(直接寫出結果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AE、BE是△ABC的兩個內角的平分線,過點AADAE.交BE的延長線于點D.若ADAB,BEED12,則cosABC_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是(  )

A.任意給定一個正方形,一定存在另一個正方形,它的周長和面積分別是已知正方形周長和面積的一半

B.任意給定一個正方形,一定存在另一個正方形,它的周長和面積分別是已知正方形周長和面積的2

C.任意給定一個矩形,一定存在另一個矩形,它的周長和面積分別是已知矩形周長和面積的一半

D.任意給定一個矩形,一定存在另一個矩形,它的周長和面積分別是已知矩形周長和面積的2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,對折矩形紙片ABCD,使ADBC重合,得到折痕EF,把紙片展平,再一次折疊紙片,使點A落在EF上的點A′處,并使折痕經(jīng)過點B,得到折痕BM,若矩形紙片的寬AB=4,則折痕BM的長為( )

A.B.C.8D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內接于⊙O,對角線AC為⊙O的直徑,過點C作AC的垂線交AD的延長線于點E,點F為CE的中點,連接DB,DC,DF.

1求∠CDE的度數(shù);

2求證:DF是⊙O的切線;

3若AC=2DE,求tan∠ABD的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為迎接年中、日、韓三國青少年橄欖球比賽,南雅中學計劃對面積為運動場進行塑膠改造.經(jīng)投標,由甲、乙兩個工程隊來完成,已知甲隊每天能改造的面積是乙隊每天能改造面積的倍,并且在獨立完成面積為的改造時,甲隊比乙隊少用.

1)求甲、乙兩工程隊每天能完成塑膠改造的面積;

2)設甲工程隊施工天,乙工程隊施工天,剛好完成改造任務,求的函數(shù)解析式;

3)若甲隊每天改造費用是萬元,乙隊每天改造費用是萬元,且甲、乙兩隊施工的總天數(shù)不超過天,如何安排甲、乙兩隊施工的天數(shù),使施工總費用最低?并求出最低的費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,BC是⊙O的直徑,點A在⊙O上,ADBC,垂足為D,,BE分別交AD、AC于點F、G

1)判斷△FAG的形狀,并說明理由;

2)如圖2,若點E和點ABC的兩側,BEAC的延長線交于點G,AD的延長線交BE于點F,其余條件不變,(1)中的結論還成立嗎?請說明理由;

3)在(2)的條件下,若BG26,BDDF7,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)時的函數(shù)值相等.

1)求二次函數(shù)的解析式;

2)若一次函數(shù)的圖象與二次函數(shù)的圖象都經(jīng)過點A,求mk的值;

3)設二次函數(shù)的圖象與x軸交于點B,C(點B在點C的左側),將二次函數(shù)的圖象在點B,C間的部分(含點B和點C)向左平移個單位后得到的圖象記為C,同時將(2)中得到的直線向上平移n個單位.請結合圖象回答:當平移后的直線與圖象G有公共點時,n的取值范圍.

查看答案和解析>>

同步練習冊答案