【題目】在平面直角坐標(biāo)系xOy中,拋物線y=x2﹣(3m+1)x+2m2+m(m>0),與y軸交于點(diǎn)C,與x軸交于點(diǎn)A(x1,0),B(x2,0),且x1<x2.
(1)求2x1﹣x2+3的值;
(2)當(dāng)m=2x1﹣x2+3時(shí),將此拋物線沿對(duì)稱(chēng)軸向上平移n個(gè)單位,使平移后得到的拋物線頂點(diǎn)落在△ABC的內(nèi)部(不包括△ABC的邊),求n的取值范圍(直接寫(xiě)出答案即可).
【答案】(1)2;(2)<n<.
【解析】
(1)解關(guān)于x的一元二次方程x2﹣(3m+1)x+2m2+m=0,結(jié)合已知條件可求得x1、x2的值,然后代入2x1﹣x2+3進(jìn)行計(jì)算即可得;
(2)由(1)可知m=2,繼而可得拋物線解析式為y=x2﹣7x+10,A(2,0),B(5,0),C(0,10),通過(guò)配方可求得拋物線的頂點(diǎn)坐標(biāo)以及對(duì)稱(chēng)軸,由B、C坐標(biāo)易得直線BC的解析式為y=﹣2x+10,繼而可得直線BC與拋物線的對(duì)稱(chēng)軸的交點(diǎn)為(,3),繼而可求得n的取值范圍.
(1)解關(guān)于x的一元二次方程x2﹣(3m+1)x+2m2+m=0,得x=2m+1或x=m,
∵m>0,x1<x2,
∴x1=m,x2=2m+1,
∴2x1﹣x2+3=2m﹣2m﹣1+3=2;
(2)當(dāng)m=2時(shí),拋物線解析式為y=x2﹣7x+10,A(2,0),B(5,0),C(0,10),
∵y=x2﹣7x+10=(x﹣)2﹣,
∴拋物線的頂點(diǎn)坐標(biāo)為(,﹣),拋物線的對(duì)稱(chēng)軸為直線x=,
易得直線BC的解析式為y=﹣2x+10,
當(dāng)x=時(shí),y=﹣2x+10=3,則n=,
∴將此拋物線沿對(duì)稱(chēng)軸向上平移n個(gè)單位,使平移后得到的拋物線頂點(diǎn)落在△ABC的內(nèi)部(不包括△ABC的邊)時(shí),n的取值范圍是<n<.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,OA=2,OB=4,以A點(diǎn)為頂點(diǎn),AB為腰,在第三象限作等腰Rt△ABC.
(1)求C點(diǎn)的坐標(biāo)及△ABC的面積;
(2)如圖2,P為y軸負(fù)半軸上一個(gè)動(dòng)點(diǎn),當(dāng)P點(diǎn)在y軸負(fù)半軸上向下運(yùn)動(dòng)時(shí),若以P為直角頂點(diǎn),PA為腰作等腰Rt△APD,過(guò)D作DE⊥x軸于E點(diǎn),求證:OP=DE+2.
(3)已知點(diǎn)F坐標(biāo)為(-2,-2),當(dāng)G在y軸的負(fù)半軸上沿負(fù)方向運(yùn)動(dòng)時(shí),請(qǐng)?jiān)趫D3作出等腰Rt△FGH,且始終保持∠GFH=90°,若FG與y軸負(fù)半軸交于點(diǎn)G(0,m),FH與x軸正半軸交于點(diǎn)H(n,0), 當(dāng)G在y軸的負(fù)半軸上沿負(fù)方向運(yùn)動(dòng)時(shí),以下結(jié)論:①m-n為定值;②m+n為定值,請(qǐng)判斷其中哪些結(jié)論是正確的,并求出其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,已知AB=AC,AB的垂直平分線交AB于點(diǎn)N,交AC于點(diǎn)M,連接MB.
(1)若∠ABC=70°,則∠NMA的度數(shù)是 度.
(2)若AB=8cm,△MBC的周長(zhǎng)是14cm.
①求BC的長(zhǎng)度;
②若點(diǎn)P為直線MN上一點(diǎn),請(qǐng)你直接寫(xiě)出△PBC周長(zhǎng)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線經(jīng)過(guò)A(2,0). 設(shè)頂點(diǎn)為點(diǎn)P,與x軸的另一交點(diǎn)為點(diǎn)B.
(1)求b的值,求出點(diǎn)P、點(diǎn)B的坐標(biāo);
(2)如圖,在直線 上是否存在點(diǎn)D,使四邊形OPBD為平行四邊形?若存在,求出點(diǎn)D的坐
標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在x軸下方的拋物線上是否存在點(diǎn)M,使△AMP≌△AMB?如果存在,試舉例驗(yàn)證你的猜想;如果不存在,試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F兩點(diǎn)在BC上,且四邊形AEFD是平行四邊形.
(1)AD與BC有何等量關(guān)系?請(qǐng)說(shuō)明理由;
(2)當(dāng)AB=DC時(shí),求證:四邊形AEFD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,∠ABC和∠ACB的角平分線相交于點(diǎn)P,且PE⊥AB,PF⊥AC,垂足分別為E、F
(1)求證:PE=PF;
(2)若∠BAC=60°,連接AP,求∠EAP的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊三角形ABC的邊長(zhǎng)為4,AD是BC邊上的中線,F是AD邊上的動(dòng)點(diǎn),E是AC邊上一點(diǎn).若AE=2,當(dāng)EF+CF取得最小值時(shí),∠ECF的度數(shù)為( )
A. 20° B. 25° C. 30° D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P在⊙O的直徑AB的延長(zhǎng)線上,PC為⊙O的切線,點(diǎn)C為切點(diǎn),連接AC,過(guò)點(diǎn)A作PC的垂線,點(diǎn)D為垂足,AD交⊙O于點(diǎn)E.
(1)如圖1,求證:∠DAC=∠PAC;
(2)如圖2,點(diǎn)F(與點(diǎn)C位于直徑AB兩側(cè))在⊙O上,,連接EF,過(guò)點(diǎn)F作AD的平行線交PC于點(diǎn)G,求證:FG=DE+DG;
(3)在(2)的條件下,如圖3,若AE=DG,PO=5,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,我們把一個(gè)半圓與拋物線的一部分圍成的封閉圖形稱(chēng)為“果圓”.已知點(diǎn)A、B、C、D分別是“果圓”與坐標(biāo)軸的交點(diǎn),拋物線的解析式為y=(x﹣1)2﹣4,AB為半圓的直徑,則這個(gè)“果圓”被y軸截得的弦CD的長(zhǎng)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com