【題目】如圖,以等邊三角形ABC的BC邊為直徑畫半圓,分別交AB、AC于點E、D,DF是圓的切線,過點F作BC的垂線交BC于點G.若AF的長為2,則FG的長為( 。

A.4
B.6
C.3
D.2

【答案】B
【解析】解:連接OD,
∵DF為圓O的切線,
∴OD⊥DF,
∵△ABC為等邊三角形,
∴AB=BC=AC,∠A=∠B=∠C=60°,
∵OD=OC,
∴△OCD為等邊三角形,
∴∠CDO=∠A=60°,∠ABC=∠DOC=60°,
∴OD∥AB,
∴DF⊥AB,
在Rt△AFD中,∠ADF=30°,AF=2,
∴AD=4,即AC=8,
∴FB=AB﹣AF=8﹣2=6,
在Rt△BFG中,∠BFG=30°,
∴BG=3,
則根據(jù)勾股定理得:FG=3
故選:B

【考點精析】解答此題的關鍵在于理解切線的性質定理的相關知識,掌握切線的性質:1、經過切點垂直于這條半徑的直線是圓的切線2、經過切點垂直于切線的直線必經過圓心3、圓的切線垂直于經過切點的半徑.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ADBC于點DAE平分∠BAC,∠B70°,∠C30°.求:

(1)BAE的度數(shù);

(2)DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,P是⊙O外一點,PA,PB分別和⊙O切于A,B兩點,C是 上任意一點,過C作⊙O的切線分別交PA,PB于D,E.若△PDE的周長為12,則PA的長為( 。

A.12
B.6
C.8
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,將坐標為(0,0),(2,1),(2,4),(0,3)的點依次連結起來形成一個圖案.

(1)這四個點的橫坐標保持不變,縱坐標變成原來的,將所有的四個點用線段依次連結起來,所得的圖案與原圖案相比有什么變化?

(2)縱、橫坐標分別變成原來的2倍呢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程組解應用題

為了保護環(huán)境,深圳某公交公司決定購買一批共10臺全新的混合動力公交車,現(xiàn)有AB兩種型號,其中每臺的價格,年省油量如下表:

A

B

價格(萬元/臺)

a

b

節(jié)省的油量(萬升/年)

2.4

2

經調查,購買一臺A型車比購買一臺B型車多20萬元,購買2A型車比購買3B型車少60萬元.

1)請求出ab;

2)若購買這批混合動力公交車每年能節(jié)省22.4萬汽油,求購買這批混合動力公交車需要多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等腰三角形一腰上的中線把這個三角形的周長分成 9cm 15cm兩部分,求這個三角形的腰長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以Rt△ABC的直角邊AB為直徑作半圓⊙O與邊BC交于點D,過D作半圓的切線與邊AC交于點E,過E作EF∥AB,與BC交于點F.若AB=20,OF=7.5,則CD的長為(  )

A.7
B.8
C.9
D.10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的切線,B為切點,圓心O在AC上,∠A=30°,D為的中點.
(1)求證:AB=BC.
(2)試判斷四邊形BOCD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①所示,將直尺擺放在三角板上,使直尺與三角板的邊分別交于點D,E,F(xiàn),G,已知∠CGD=42°
(1)求∠CEF的度數(shù);
(2)將直尺向下平移,使直尺的邊緣通過三角板的頂點B,交AC邊于點H,如圖②所示,點H,B在直尺上的讀數(shù)分別為4,13.4,求BC的長(結果保留兩位小數(shù)).
(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

查看答案和解析>>

同步練習冊答案