【題目】如圖,,平分,上一點,于點,, ,則_____.

【答案】

【解析】

PPFOBF,根據(jù)角平分線的定義可得∠AOC=BOC=15°,根據(jù)平行線的性質可得∠DPO=AOP,從而可得PD=OD,再根據(jù)30度所對的邊是斜邊的一半可求得PF的長,最后根據(jù)角平分線的性質即可求得PE的長.

解:過PPFOBF,

∵∠AOB=30°OC平分∠AOB,

∴∠AOC=BOC=15°,

又∵PDOA

∴∠DPO=AOP=15°,

PD=OD=4cm

∵∠AOB=30°,PDOA

∴∠BDP=30°,

∴在RtPDF中,PF=PD=2cm,

OC為角平分線且PEOAPFOB,

PE=PF,

PE=PF=2cm


故答案為:2cm

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一條筆直的公路上有甲乙兩地相距2400米,王明步行從甲地到乙地,每分鐘走96米,李越騎車從乙地到甲地后休息2分鐘沿原路原速返回乙地.設他們同時出發(fā),運動的時間為t(分),與乙地的距離為s(米),圖中線段EF,折線OABD分別表示兩人與乙地距離s和運動時間t之間的函數(shù)關系圖象.

1)李越騎車的速度為______米/分鐘;

2B點的坐標為______;

3)李越從乙地騎往甲地時,st之間的函數(shù)表達式為______;

4)王明和李越二人______先到達乙地,先到______分鐘.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了保護環(huán)境,新農村改造過程中需要修建污水處理廠,如圖,是位于直線小河同側的兩個村莊,村距離小河的距離村距離小河的距離,經測量,現(xiàn)準備在小河邊修建一個污水處理廠(不考慮河寬)

1)設,請用含的代數(shù)式表示的長(保留根號);

2)為了節(jié)省材料,使得兩村的排污管道最短,求最短的排污管長;

3)根據(jù)(1)(2)的結果,運用數(shù)形結合思想,求的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一個有45°角的三角板的直角頂點放在一張寬為3cm的紙帶邊沿上,另一個頂

點在紙帶的另一邊沿上,測得三角板的一邊與紙帶的一邊所在的直線成30°角,如圖(3),

則三角板的最大邊的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們約定:如果身高在選定標準的±2%范圍之內都稱為普啟遍身高.為了了解某校九年級男生中具有普遍身高的人數(shù),我們從該校九年級男生中隨機抽出10名男生,分別測量出他們的身高(單位:cm),收集并整理如下統(tǒng)計表:

男生
序號











身高x(cm)

163

171

173

159

161

174

164

166

169

164

根據(jù)以上信息,解答如下問題:

(1)計算這組數(shù)據(jù)的三個統(tǒng)計量:平均數(shù)、中位數(shù)、眾數(shù);

(2)請你選擇其中一個統(tǒng)計量作為選定標準,找出這10名男生中具有普遍身高是哪幾位男生?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OAOB,ABx軸于C,點A(,1)在反比例函數(shù)y=的圖象上.

(1)求反比例函數(shù)y=的表達式;

(2)在x軸上存在一點P,使SAOP= SAOB, 求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如圖,若雙曲線(k>0)與它的其中一條對稱軸y=x相交于兩點A,B,則線段AB的長稱為雙曲線(k>0)的對徑.

(1)求雙曲線的對徑;

(2)若某雙曲線(k>0)的對徑是.求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC,ABC=2C,B為圓心任意長為半徑作弧,BA、BC于點E. F,分別以E. F為圓心,以大于EF的長為半徑作弧,兩弧交于點P,作射線BPAC于點,則下列說法不正確的是( )

A.ADB=ABCB.AB=BDC.AC=AD+BDD.ABD=BCD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一直角坐標系中,函數(shù)y=mx+m和函數(shù)y=mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( 。

A. B. C. D.

查看答案和解析>>

同步練習冊答案