【題目】如圖,正方形ABCD的邊長為1,順次連接正方形ABCD四邊的中點得到第一個正方形A1B1C1D1,由順次連接正方形A1B1C1D1四邊的中點得到第二個正方形A2B2C2D2…,以此類推,則第六個正方形A6B6C6D6周長是( )

A.B.C.D.

【答案】A

【解析】

根據(jù)題意,利用中位線定理可證明順次連接正方形ABCD四邊中點得正方形的面積為正方形ABCD面積的一半,根據(jù)面積關(guān)系可得周長關(guān)系,以此類推可得正方形 的周長.

本題解析: 順次連接正方形ABCD四邊的中點得正方形,則得正方形的面積為正方形ABCD面積的一半,,則周長是原來的;

順次連接正方形中點得正方形 ,則正方形的面積為正方形面積的一半,,則周長是原來的;

順次連接正方形得正方形,則正方形的面積為正方形面積的一半,,則周長是原來的;

順次連接正方形 中點得正方形 ,則正方形的面積為正方形面積的一半 ,則周長是原來的;

故第n個正方形周長是原來的

以此類推:第六個正方形 周長是原來的,

∵正方形ABCD的邊長為1,

∴周長為4,

∴第六個正方形A6B6C6D6周長是.

故答案為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設(shè)DE=x.

(1)用含x的代數(shù)式表示線段CF的長;

(2)如果把CAE的周長記作CCAE,BAF的周長記作CBAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;

(3)當∠ABE的正切值是時,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,如圖所示,點.

1)求直線的解析式;

2)求的面積;

3)一次函數(shù)為常數(shù)).

①求證:一次函數(shù)的圖象一定經(jīng)過點

②若一次函數(shù)的圖象與線段有交點,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店將每件進價為80元的某種商店按每件110元出售,每天可售出100件.該商店想通過降低售價、增加銷售量的方法來提高利潤.經(jīng)市場調(diào)查,發(fā)現(xiàn)這種商品每件每降價5元,每天的銷售量可增加50件.設(shè)商品降價x元,每天銷售該商品獲得的利潤為y元.

(1)求y(元)關(guān)于x(元)的函數(shù)關(guān)系式,并寫出x的取值范圍.

(2)求當x取何值時y最大?并求出y的最大值.

(3)若要是每天銷售利潤為3750元,且盡可能最大的向顧客讓利,應(yīng)將該商品降價多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列五個命題:兩個端點能夠重合的弧是等;圓的任意一條弧必定把圓分成劣弧和優(yōu)弧兩部分經(jīng)過平面上任意三點可作一個圓;任意一個圓有且只有一個內(nèi)接三角形三角形的外心到各頂點距離相等.其中真命題有(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,點邊上的動點(不與、重合),

,于點

(1)的大小關(guān)系為________.請證明你的結(jié)論;

(2)設(shè),,求關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(3)是等腰三角形時,求的長;

(4)是否存在,使的面積是面積的倍?若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮和媽媽從家出發(fā)到長嘉匯觀看國慶燈光秀,媽媽先出發(fā),2分鐘后小亮沿同一路線出發(fā)去追媽媽,當小亮追上媽媽時發(fā)現(xiàn)相機落在途中了,媽媽立即返回找相機,小亮繼續(xù)前往長嘉匯,當小亮到達長嘉匯時,媽媽剛好找到了相機并立即前往長嘉匯(媽媽找相機的時間不計),小亮在長嘉匯等了一會,沒有等到媽媽,就沿同一路線返回接媽媽,最終與媽媽會合,小亮和媽媽的速度始終不變,如圖是小亮和媽媽兩人之間的距離y(米)與媽媽出發(fā)的時間x(分鐘)的圖象;則小亮開始返回時,媽媽離家的距離為_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種飲料,平均每天可售出100箱,每箱利潤120元.為了擴大銷售,增加利潤,超市準備適當降價.據(jù)測算,若每箱降價1元,每天可多售出2箱.

1)如果要使每天銷售飲料獲利14000元,問每箱應(yīng)降價多少元?

2)每箱降價多少元超市每天獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果店進行了一次水果促銷活動,在該店一次性購買A種水果的單價y(元)與購買量x(千克)的函數(shù)關(guān)系如圖所示,

1)當0x5時,單價y   元.當單價y8.8時,x的取值范圍為   

2)根據(jù)函數(shù)圖象,求第段函數(shù)圖象中單價y(元)與購買量(千克)的函數(shù)關(guān)系式,并寫出x的取值范圍.

3)促銷活動期間,張老師計劃去該店購買A種水果10千克,那么張老師共需花費多少錢?

查看答案和解析>>

同步練習(xí)冊答案