【題目】如圖,AB是一條直線,OC是∠AOD的平分線,OE在∠BOD內,∠DOE=∠BOD,∠COE=72°,則∠EOB=( )

A. 36° B. 72°

C. 108° D. 120°

【答案】B

【解析】

∠DOE=x,根據(jù)題意得到∠BOE=2x,∠AOC=∠COD=72°﹣x,再根據(jù)平角為180度,得到72°﹣x+3x=180°,解得x=36°,即可得到∠BOE的度數(shù).

解:如圖,設∠DOE=x,

∵∠DOE=∠BOD,

∴∠BOE=2x

∵OC∠AOD的平分線,∠COE=72°,

∴∠AOC=∠COD=72°﹣x;

∴2×72°﹣x+3x=180°,

解得x=36°,

∴∠BOE=2x=2×36°=72°

故選B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( 。

①最大的負整數(shù)是﹣1;②數(shù)軸上表示數(shù)2 和﹣2的點到原點的距離相等;③當a≤0時,|a|=﹣a成立;④a的倒數(shù)是;(﹣2)2 和﹣22相等.

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在三角形ABC中,∠C90°,AC6cm,BC10cm,點PB點開始向C點運動速度是每秒1cm,設運動時間是t秒,

1)用含t的代數(shù)式來表示三角形ACP的面積.

2)當三角形ACP的面積是三角形ABC的面積的一半時,求t的值,并指出此時點PBC上的什么位置?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法不正確的有(  )

①一個三角形至少有2個銳角;②在△ABC中,若∠A=2B=3C,則△ABC為直角三角形;③過n邊形的一個頂點可作(n﹣3)條對角線;④n邊形每增加一條邊,則其內角和增加360°.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠ABC的角平分線與∠ACB的外角∠ACD的平分線交于A1

(1)當∠A為70°時,

∵∠ACD -∠ABD=∠____________

∴∠ACD -∠ABD=______________°

∵BA1、CA1是∠ABC的角平分線與∠ACB的外角∠ACD的平分線

∴∠A1CD -∠A1BD=(∠ACD-∠ABD)

∴∠A1=___________°;

(2)∠A1BC的角平分線與∠A1CD的角平分線交于A2,∠A2BC與A2CD的平分線交于A3,如此繼續(xù)下去可得A4、…、An,請寫出∠A與∠An 的數(shù)量關系____________;

(3)如圖2,四邊形ABCD中,∠F為∠ABC的角平分線及外角∠DCE的平分線所在的直線構成的角,若∠A+∠D=230度,則∠F=  

(4)如圖3,若E為BA延長線上一動點,連EC,∠AEC與∠ACE的角平分線交于Q,當E滑動時有下面兩個結論:①∠Q+∠A1的值為定值;②∠Q —∠A1的值為定值.

其中有且只有一個是正確的,請寫出正確的結論,并求出其值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,lA,lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關系.

1B出發(fā)時與A相距______千米.

2B走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是______小時.

3B出發(fā)后______小時與A相遇.

4)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進,______小時與A相遇,相遇點離B的出發(fā)點______千米.在圖中表示出這個相遇點C

5)求出A行走的路程S與時間t的函數(shù)關系式。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B兩個小集鎮(zhèn)在河流CD的同側,分別到河的距離為AC=10千米,BD=30千米,且CD=30千米,現(xiàn)在要在河邊建一自來水廠,向A、B兩鎮(zhèn)供水,鋪設水管的費用為每千米3萬,請你在河流CD上選擇水廠的位置M,使鋪設水管的費用最節(jié)省,并求出總費用是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ABCD相交于點O,AOC=50°,OE平分∠AOD,OF平分∠BOD.

(1)填空:∠BOD=   度;

(2)試說明OEOF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明、小兵、小穎三人的家和學校在同一條東西走向的路上,星期天,老師到這三家進行家訪,從學校出發(fā)先向東走 250m 到小明家,后又向東走 350m 到小兵家,再向西行 800m 到小穎家,最后回到學校.

(1)以學校為原點,畫出數(shù)軸并在數(shù)軸上分別表示出小明、小兵、小穎家的位置;

(2)小明家距離小穎家多遠?

(3)這次家訪,老師共走了多少千米的路程?

查看答案和解析>>

同步練習冊答案