【題目】關于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k為常數(shù).

(1)求證:無論k為何值,方程總有兩個不相等實數(shù)根;

(2)若原方程的一根大于3,另一根小于3,求k的最大整數(shù)值.

【答案】(1)證明見解析;(2)2;

【解析】

(1)求出方程的判別式△的值,利用配方法得出△>0,根據(jù)判別式的意義即可證明;

(2)設方程的兩個根分別是x1,x2,根據(jù)題意得(x1-3)(x2-3)<0,根據(jù)一元二次方程根與系數(shù)的關系求得k的取值范圍,再進一步求出k的最大整數(shù)值.

(1)∵△

∴無論為何值,方程總有兩個不相等實數(shù)根;

(2)設方程的兩個根分別是,,根據(jù)題意,,

,

代入得,,

解得

的最大整數(shù)值為2.

故答案為:(1)證明見解析;(2)2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直角三角板放在平面直角坐標系中,直角邊垂直軸,垂足為,已知,點,均在反比例函數(shù)的圖象上,分別作軸于,軸于,延長交于點,且點的中點.

求點的坐標;

求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知梯形ABCD中,ABCD,D=90°,BE平分∠ABC,交CD于點E,F(xiàn)AB的中點,聯(lián)結AE、EF,且AEBE.

求證:(1)四邊形BCEF是菱形;

(2).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小剛準備用一段長 44 米的籬笆圍成三角形,用于養(yǎng)雞。已知一條邊長 x 米,第二條邊是第一條邊的 3 倍多 6 米。

1)若能圍成一個等腰三角形,求三邊長

2)若第一邊長最短,寫出 x 的取值范圍 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請參照下面探究過程,完成所提出的問題.

(1)如圖1,在△ABC中,點O是∠ABC和∠ACB平分線的交點.

若∠A30°,則∠BOC

若∠Aα,則∠BOC (用含α的代數(shù)式表示)

(2)如圖2,在四邊形ABDC中,點O是∠ABD和∠ACD外角平分線的交點,寫出∠A、∠D與∠O之間的數(shù)量關系,并說明理由;

(3) 如圖3,在四邊形ABDC中,∠ABD和∠ACD外角的n等分線交于O,使∠ABDnABO,∠ACEnACO.直接寫出∠A、∠D和∠O之間的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在RtABC中,∠ACB90°,AC10cm,BC5cm,點P從點C出發(fā)沿線段CA以每秒2cm的速度運動,同時點Q從點B出發(fā)沿線段BC以每秒1cm的速度運動.設運動時間為t秒(0t5).

1)填空:AB   cm;

2t為何值時,PCQACB相似;

3)如圖2,以PQ為斜邊在異于點C的一側作RtPEQ,且,連結CE,求CE.(用t的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次促銷活動中,某商場為了吸引顧客,設立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤(如圖,轉(zhuǎn)盤被平均分成份),并規(guī)定:顧客每購買元的商品,就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會.如果轉(zhuǎn)盤停止后,指針正好對準紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得元、元、元的購物券,憑購物券可以在該商場繼續(xù)購物.如果顧客不愿意轉(zhuǎn)轉(zhuǎn)盤,那么可以直接獲得購物券元.

(1)求每轉(zhuǎn)動一次轉(zhuǎn)盤所獲購物券金額的平均數(shù);

(2)如果你在該商場消費元,你會選擇轉(zhuǎn)轉(zhuǎn)盤還是直接獲得購物券?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,△ABC的三個頂點的位置如圖所示

1)請畫出△ABC關于y軸對稱的△ABC;(其中A、BC分別是A、B、C的對應點,不寫畫法)

2)直接寫出ABC三點的坐標;

3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點D,連接CD并延長交AB的延長線于點F

1)求證:CF是⊙O的切線;

2)若∠F=30°EB=6,求圖中陰影部分的面積(結果保留根號和π

查看答案和解析>>

同步練習冊答案