【題目】如圖,在平面直角坐標(biāo)系內(nèi),點(diǎn)A,B的坐標(biāo)分別為(1,0),(0,2),AC⊥AB,且AB=AC,直線BC交軸于點(diǎn)D,拋物線經(jīng)過點(diǎn)A,B,D.
(1)求直線BC和拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)P是直線BD下方的拋物線上一點(diǎn),求△PCD面積的最大值,以及△PCD面積取得最大值時(shí),點(diǎn)P的坐標(biāo);
(3)若點(diǎn)P的坐標(biāo)為(2)小題中,△PCD的面積取得最大值時(shí)對(duì)應(yīng)的坐標(biāo).平面內(nèi)存在直線l,使點(diǎn)B,D,P到該直線的距離都相等,請(qǐng)直接寫出所有滿足條件的直線l的函數(shù)表達(dá)式.
【答案】(1),;(2)△PCD的面積最大值為,P(3,);(3),,
【解析】
(1)如下圖,先求出點(diǎn)C的坐標(biāo),從而求得BC的解析式,進(jìn)而得出點(diǎn)D的坐標(biāo),從而得出拋物線的解析式;
(2)如下圖,設(shè)點(diǎn)P的橫坐標(biāo)為,,將△PCD的面積用t表示出來,利用二次函數(shù)的性質(zhì)求出最大值;
(3)存在三條直線,分別是△PDB三條中位線所在的直線.
解:(1)過點(diǎn)C作CE⊥軸,垂足為E.
∵AB=AC,∠AOB=∠CEA=90°,∠ABO=∠CAE,
∴△ABO≌△CAE.
∴AO=CE,BO=AE.
∵A(1,0),B(0,2),∴CE=AO=1,AE=BO=2.
∴C(3,1).
設(shè)直線BC的函數(shù)表達(dá)式為().
把點(diǎn)B(0,2),C(3,1)代入,得
解方程組,得
所以,直線BC的函數(shù)表達(dá)式為.
令,得,
∴D(6,0).
∵拋物線經(jīng)過點(diǎn)A(1,0),D (6,0).
∴解方程組,得
∴拋物線的函數(shù)表達(dá)式為.
(2)過點(diǎn)P作軸的垂線,垂足為H,交BD于點(diǎn)F.令P的橫坐標(biāo)為.
∵點(diǎn)P在BD直線下方的拋物線上移動(dòng),
∴PF=.
過點(diǎn)C作CG⊥PF,垂足為G.
.
所以,當(dāng)時(shí),△PCD的面積取得最大值,最大值為.
此時(shí)點(diǎn)P坐標(biāo)為(3,).
(3)滿足條件的直線有三條,是△PDB三條中位線所在的直線.
圖形如下圖,點(diǎn)I、J、K分別是BP、BD和PD的中點(diǎn)
∵P(3,-2),B(0,2),D(6,0)
∴I(,0),J(3,1),K(,-1)
∴IJ所對(duì)應(yīng)的直線解析式為:
IK所對(duì)應(yīng)的直線解析式為:
JK所對(duì)應(yīng)的直線解析式為:
綜上得:三條直線的函數(shù)表達(dá)式分別為,,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點(diǎn)D且BD=2AD,過點(diǎn)D作DE⊥AC交BA延長線于點(diǎn)E,垂足為點(diǎn)F.
(1)求tan∠ADF的值;
(2)證明:DE是⊙O的切線;
(3)若⊙O的半徑R=5,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場開業(yè),為了活躍氣氛,用紅、黃、藍(lán)三色均分的轉(zhuǎn)盤設(shè)計(jì)了兩種抽獎(jiǎng)方案,凡來商場消費(fèi)的顧客都可以選擇一種抽獎(jiǎng)方案進(jìn)行抽獎(jiǎng)(若指針恰好停在分割線上則重轉(zhuǎn)).
方案一:轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,指針落在紅色區(qū)域可領(lǐng)取一份獎(jiǎng)品;
方案二:轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,指針落在不同顏色區(qū)域可領(lǐng)取一份獎(jiǎng)品.
(1)若選擇方案一,則可領(lǐng)取一份獎(jiǎng)品的概率是 ;
(2)選擇哪個(gè)方案可以使領(lǐng)取一份獎(jiǎng)品的可能性更大?請(qǐng)用列表法或畫樹狀圖法說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年4月23日是第二十四個(gè)“世界讀書日“.某校組織讀書征文比賽活動(dòng),評(píng)選出一、二、三等獎(jiǎng)若干名,并繪成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(不完整),請(qǐng)你根據(jù)圖中信息解答下列問題:
(1)求本次比賽獲獎(jiǎng)的總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求扇形統(tǒng)計(jì)圖中“二等獎(jiǎng)”所對(duì)應(yīng)扇形的圓心角度數(shù);
(3)學(xué)校從甲、乙、丙、丁4位一等獎(jiǎng)獲得者中隨機(jī)抽取2人參加“世界讀書日”宣傳活動(dòng),請(qǐng)用列表法或畫樹狀圖的方法,求出恰好抽到甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,AD與BC相交于點(diǎn)E,AF平分∠BAD,交BC于點(diǎn)F,交CD的延長線于點(diǎn)G.
(1)若∠G=29°,求∠ADC的度數(shù);
(2)若點(diǎn)F是BC的中點(diǎn),求證:AB=AD+CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,AE⊥BC交CB延長線于E,CF∥AE交AD延長線于點(diǎn)F.
(1)求證:四邊形AECF是矩形;
(2)連接OE,若AE=8,AD=10,求OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為落實(shí)國務(wù)院房地產(chǎn)調(diào)控政策,使“居者有其屋”,某市加快了廉租房的建設(shè)力度.2015年市政府共投資3億元人民幣建設(shè)了廉租房12萬平方米,2017年計(jì)劃投資6.75億元人民幣建設(shè)廉租房,若在這兩年內(nèi)每年投資的增長率相同.
(1)求每年市政府投資的增長率;
(2)若這兩年內(nèi)的建設(shè)成本不變,問從2015到2017年這三年共建設(shè)了多少萬平方米廉租房?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列數(shù)據(jù)是甲、乙、丙三人各10輪投籃的得分(每輪投籃10次,每次投中記1分):
丙得分的平均數(shù)與眾數(shù)都是7,得分統(tǒng)計(jì)表如下:
測試序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
得分 | 7 | 6 | 8 | a | 7 | 5 | 8 | b | 8 | 7 |
(1)丙得分表中的a= ,b= ;
(2)若在他們?nèi)酥羞x擇一位投籃得分高且較為穩(wěn)定的投手作為主力,你認(rèn)為選誰更合適?請(qǐng)用你所學(xué)過的統(tǒng)計(jì)知識(shí)加以分析說明(參考數(shù)據(jù):,,);
(3)甲、乙、丙三人互相之間進(jìn)行傳球練習(xí),每個(gè)人的球都等可能的傳給其他兩人,球最先從乙手中傳出,經(jīng)過三次傳球后球又回到乙手中的概率是多少?(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)B在x軸的正半軸上,D(0,8),將矩形OBCD折疊,使得頂點(diǎn)B落在CD邊上的P點(diǎn)處.
(1)若圖1中的點(diǎn) P 恰好是CD邊的中點(diǎn),求∠AOB的度數(shù).
(2)如圖1,已知折痕與邊BC交于點(diǎn)A,若OD=2CP,求點(diǎn)A的坐標(biāo).
(3)如圖2,在(2)的條件下,擦去折痕AO,線段AP,連接BP,動(dòng)點(diǎn)M在線段OP上(點(diǎn)M與P,O不重合),動(dòng)點(diǎn)N在線段OB的延長線上,且BN=PM,連接MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E,試問當(dāng)點(diǎn)M,N在移動(dòng)過程中,線段EF的長度是否發(fā)生變化?
若變化,說明理由;若不變,求出線段EF的長度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com