【題目】如圖,為原點,數(shù)軸上兩點所對應(yīng)的數(shù)分別為,且滿足關(guān)于的整式之和是是單項式,動點以每秒個單位長度的速度從點向終點運動.

1)求的值.

2)當(dāng)時,求點的運動時間的值.

3)當(dāng)點開始運動時,點也同時以每秒個單位長度的速度從點向終點運動,若,求的長.

【答案】(1) m=-40,n=30.(2)t=5.3AP=AP=70.

【解析】

(1)根據(jù)單項式的次數(shù)相同,列方程即可得到答案;

(2) 分情況討論:當(dāng)點PO的左側(cè)時:當(dāng)點PO的右側(cè)時.即可得到答案.

3)結(jié)合題意分別計算:①如圖1,當(dāng)點P在點Q左側(cè)時,如圖2,當(dāng)點P在點Q右側(cè)時.

(1)因為mn滿足關(guān)于x、y的整式-x41+myn+602xy3n之和是單項式
所以
所以m=-40,n=30.
(2)因為A、B所對應(yīng)的數(shù)分別為-4030,
所以AB=70,AO=40,BO=30,
當(dāng)點PO的左側(cè)時:
PA+PO=AO=40
因為PB-(PA+PO)=10,PB=AB-AP=70-4t
所以70-4t-40=10

所以t=5.
當(dāng)點PO的右側(cè)時:
因為PB<PA

所以PB-(PA+PO)<0,不合題意,舍去
3)①如圖1,當(dāng)點P在點Q左側(cè)時,


因為AP=4t,BQ=2t,AB=70
所以PQ=AB-(AP+BQ)=70-6t
又因為PQ=AB=35

所以70-6t=35

所以t=,AP==,

②如圖2,當(dāng)點P在點Q右側(cè)時,

因為AP=4t,BQ=2tAB=70,

所以PQ=AP+BQ-AB=6t-70,

又因為PQ=AB=35

所以6t-70=35

所以t=

所以AP==70.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=kx(k<0)與雙曲線交于A(x1,y1),B(x2,y2)兩點,則3x1y2-5x2y1的值為 __________.

【答案】-6

【解析】試題分析:∵點Ax1y1),Bx2,y2)是雙曲線y上的點,

x1y1x2y2=-3,

∵直線ykxk0)與雙曲線y交于點Ax1,y1),Bx2y2)兩點,

x1=-x2y1=-y2,

∴原式=-3x1y15x2y2915=-6

故答案為:6

點睛:本題考查的是反比例函數(shù)與一次函數(shù)的交點問題,反比例函數(shù)的對稱性,根據(jù)反比例函數(shù)的圖象關(guān)于原點對稱得出x1=-x2y1=-y2是解答此題的關(guān)鍵.

型】填空
結(jié)束】
15

【題目】A,B兩地相距180km,新修的高速公路開通后,在A,B兩地間行駛的長途客車平均車速提高了 50%,而從A地到B地的時間縮短了 1h .若設(shè)原來的平均車速為xkm/h,則根據(jù)題意可列方程為 _____________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把一個含45°角的直角三角板BEF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點B重合,聯(lián)結(jié)DF,MN分別為DF,EF的中點,聯(lián)結(jié)MAMN.

(1)如圖1,點E,F分別在正方形的邊CB,AB上,請判斷MA,MN的數(shù)量關(guān)系和位置關(guān)系,直接

寫出結(jié)論;

(2)如圖2,EF分別在正方形的邊CBAB的延長線上,其他條件不變,那么你在(1)中得到的兩個結(jié)論還成立嗎?若立,請加以證明;若不成立,請說明理由.

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好改善河流的水質(zhì),治污公司決定購買10臺污水處理設(shè)備.現(xiàn)有AB兩種型號的設(shè)備,其中每臺的價格,月處理污水量如下表:經(jīng)調(diào)查:購買一臺A型設(shè)備比購買一臺B型設(shè)備多2萬元,購買2A型設(shè)備比購買3B型設(shè)備少6萬元.

A

B

價格(萬元/臺)

a

b

處理污水量(噸/月)

240

180

1)求ab的值;

2)治污公司經(jīng)預(yù)算購買污水處理設(shè)備的資金不超過105萬元,你認(rèn)為該公司有哪幾種購買方案;

3)在(2)的條件下,若每月要求處理污水量不低于2040噸,為了節(jié)約資金,請你為治污公司設(shè)計一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線y=﹣x+2與反比例函數(shù)y=的圖象有唯一公共點,若直線y=﹣x+b與反比例函數(shù)y=的圖象有2個公共點,則b的取值范圍是( 。

A. b>2 B. ﹣2<b<2 C. b>2或b<﹣2 D. b<﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,試判斷的大小關(guān)系,并證明你的結(jié)論。

猜想:∠AED=C,
理由:∵∠2+ADF=180°( ),
1+2=180°( )
∴∠1=ADF( ),
ADEF( ),
∴∠3=ADE( ),
∵∠3=B( )
∴∠B=ADE( ),
DEBC( )
∴∠AED=C( ),

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】只用無刻度的直尺作圖(保留作圖痕跡,不要求寫作法)

1)如圖1,已知∠AOB,OAOB,點EOB邊上,其中四邊形AEBF是平行四邊形,請你在圖中畫出∠AOB的平分線.

2)如圖2,已知E是菱形ABCDAB邊上的中點,請你在圖中畫出一個矩形EFGH,使得其面積等于菱形ABCD的一半.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,A,B的坐標(biāo)分別為A(a,0),B(b,0),a,

b滿足 |a+2|+=0,C的坐標(biāo)為(0,3).

(1)a,b的值及S三角形ABC;

(2)若點Mx軸上,S三角形ACMS三角形ABC,試求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,已知點A(﹣3,0)、B0,4),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到△1、△2、△3、△4、,△16的直角頂點的坐標(biāo)為( 。

A. 600 B. 72,0 C. 67, D. 79

查看答案和解析>>

同步練習(xí)冊答案