精英家教網 > 初中數學 > 題目詳情
(1)在足球比賽中,當守門員遠離球門時,進攻隊員常常使用“吊射”的戰(zhàn)術(把球高高地挑過守門員的頭頂射入球門).一位球員在離對方球門30米的M處起腳吊射,假如球飛行的路線是一條拋物線,在離球門14米時,足球到達最大高度
32
3
米,如圖,以球門底部為坐標原點建立坐標系,球門PQ的高度為2.44米,試通過計算說明,球是否會進入球門?
(2)在(1)中,若守門員站在距球門2米遠處,而守門員跳起后最多能摸到2.75米高處,他能否在空中截住這次吊射?
(1)由題意可知,拋物線的頂點(14,
32
3
),
拋物線過點M(30,0),
設它的解析式為y=a(x-14)2+
32
3
,
把點M(30,0)代入y=a(x-14)2+
32
3

解得a=-
1
24
,
∴拋物線的解析式為y=-
1
24
(x-14)2+
32
3
,
令x=0,得y=
5
2
,即足球到達球門時的高度為
5
2
米,
5
2
>2.44,
∴球不會進入球門;

(2)y=-
1
24
(x-14)2+
32
3
,
令x=2,得y=
14
3

即球在離球門2米處得高度為
14
3
米,
14
3
>2.75,
∴守門員不能在空中截住這次吊射.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:填空題

已知拋物線的頂點是(-1,-2),且過點(1,10).求此拋物線對應的二次函數關系式______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c(a≠0)經過A(-2,-3)、B(3,2)兩點,且與x軸相交于M、N兩點,當以線段MN為直徑的圓的面積最小時,求M、N兩點的坐標和四邊形AMBN的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知如圖,矩形OABC的長OA=
3
,寬OC=1,將△AOC沿AC翻折得△APC.
(1)求∠PCB的度數;
(2)若P,A兩點在拋物線y=-
4
3
x2+bx+c上,求b,c的值,并說明點C在此拋物線上;
(3)(2)中的拋物線與矩形OABC邊CB相交于點D,與x軸相交于另外一點E,若點M是x軸上的點,N是y軸上的點,以點E、M、D、N為頂點的四邊形是平行四邊形,試求點M、N的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖:正方形ABCO的邊長為3,過A(0,3)點作直線AD交x軸于D點,且D點的坐標為(4,0),線段AD上有一動點,以每秒一個單位長度的速度移動.
(1)求直線AD的解析式;
(2)若動點從A點開始沿AD方向運動2.5秒時到達的位置為點P,求經過B、O、P三點的拋物線的解析式;
(3)若動點從A點開始沿AD方向運動到達的位置為點P1,過P1作P1E⊥x軸,垂足為E,設四邊形BCEP1的面積為S,請問S是否有最大值?若有,請求出P點坐標和S的最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線y=-x2+(m+2)x-3(m-1)交x軸于點A、B(A在B的右邊),直線y=(m+1)x-3經過點A.若m<1.
(1)求拋物線和直線的解析式;
(2)直線y=kx(k<0)交直線y=(m+1)x-3于點P,交拋物線y=-x2+(m+2)x-3(m-1)于點M,過M點作x軸垂線,垂足為D,交直線y=(m+1)x-3于點N.問:△PMN能否為等腰三角形?若能,求k的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知拋物線y=-x2+bx+c的圖象經過(1,0)和(0,3)兩點,它的部分圖象如下圖.
(1)求b、c的值;
(2)寫出當y>0時,x的取值范圍;
(3)求y的取值范圍.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

某商品的進價為每件30元,現在的售價為每件40元,每星期可賣出150件.市場調查反映:如果每件售價每漲1元(售價每件不能高于45元),那么每星期少賣10件.設每件售價為x元(x為非負整數),則若要使每星期的利潤最大且每星期的銷量較大,x應為多少元?( 。
A.41B.42C.42.5D.43

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

兒童商場購進一批M型服裝,銷售時標價為75元/件,按8折銷售仍可獲利50%.商場現決定對M型服裝開展促銷活動,每件在8折的基礎上再降價x元銷售,已知每天銷售數量y(件)與降價x(元)之間的函數關系式為y=20+4x(x>0).
(1)求M型服裝的進價;
(2)求促銷期間每天銷售M型服裝所獲得的利潤W的最大值.

查看答案和解析>>

同步練習冊答案